Two files are attached to this note. One, union.xsd, is an XML Schema that defines a simple type to be one of four well-known enumerated values, and an NMTOKEN whose value range is constrained by a regular expression or an integer always having four digits.

The other, union.xml, is an XML file conforming to the provided Schema. This file validates against the Schema via XML Spy. Altering the XML file by, for example, trying to include an integer of only three digits, gives a validation error as expected.

Of course, regular Schema base types, e.g., xs:string or xs:integer, could be mixed into the union as well. I hope, though, that the few simple restrictions here will give an understanding of the detail to which we can pin down syntax at the lexical level via XML Schema.

It’s easy for me to envision a policy where any name defined via an enumeration in the Schema must be dealt with intelligently by an application. Intelligently dealing with an enumerated value might be to ignore it but the application should make that decision explicitly.

Values of type xs:NMTOKEN would, of course, be application specific. Depending upon use, we may wish to constrain the form of the values or not. E.g., for some names we might wish to define known prefixes with particular semantics and use patterns to constrain the possible values to those beginning with one of those prefixes.

The ability to mix very different base types, e.g., xs:NMTOKEN and xs:integer, will also be useful. It’s this mechanism that allows the XML Schema for XML Schemas to model the data type of the maxOccurs attribute of several Schema elements. This attribute is defined to take values in the range 1 .. unbounded. This is modeled easily as a union of xs:positiveInteger and an xs:enumeration of one value, “unbounded”. Using enumerated values mixed with numeric values allows us to avoid picking an arbitrary unused number, e.g., -1, to indicate the unbounded case.

