Section 2 - DP abstract-service definition�tc "Section 2 - DP abstract-service definition"\l�

[Temporary note - 5 December 1997 - Incorporated revisions in accordance with the final text of Technical Corrigendum 1; these have been approved by ISO and are considered part of the the original DPA part 1.

[Also incorporated revisions specified in Proposed Technical Corrigenda 2 thru 4; note that these are to be circulated for ballot, and are subject to change.

[In order to identify the source of the revisions, display/print this document with hidden text visible. The corrigenda are identified as TC 1, PTC 2, PTC 3, and PTC 4, respectively.]

6	DP abstract model�tc "6	DP abstract model"\l�

This clause provides an abstract functional model of the Document Printing Application (DPA) defined by this International Standard. For an introduction and description of the abstract-service concept and its definition conventions, see ISO/IEC 10021-3.

The Document Printing Abstract Model is illustrated in Figure 6-1. This model identifies two entities, a DP-User and a DP-Administrator, which interact with a third entity, a DP-Server, to provide a comprehensive facility for the printing of documents in a network environment.

The abstract-services defined by this International Standard, collectively referred to as DPA, enable a DP-User to send electronic documents to a DP-Server, and to request the printing of those documents. In addition, the DPA provides the means for a DP-User to make inquiries of the DP-Server, in order to determine, for example, the status of a previously-submitted print-request, or the progress of the print-job created to execute and manage the request, or to determine the status or capabilities of the DP-Server itself.

Additional facilities are included in the DPA for the purpose of managing a DP-Server. These server management facilities may be constrained by a particular DP-Server to limit their use to members of a certain class of users, referred to as DP-Administrators.

�embed MSDraw * mergeformat ���

Figure 6-1 - Document Printing Abstract Model

A DP-Server is modeled as an object whose overall behavior can be described without reference to its internal structure. The services provided by the DP-Server object are made available at ports, where a type of port corresponds to a set of abstract-operations that can be accessed at the port (in this case, those abstract-operations which can be performed by the DP-Server object).

A DP-User and a DP-Administrator are each modeled as objects which obtain the services provided by a DP-Server through one or two port types, respectively. A DP-User is associated with a single port type, the DP-User port; a DP-Administrator, on the other hand, may access two types of port: the same port type available to a DP-User, and an additional port type that is reserved for administrative functions, the DP-Administration port.

This means that a DP-User is limited to performing only those operations defined on the DP-User port, but a DP-Administrator can perform any operation available to a DP-User, in addition to those operations defined on the DP-Administration port. In the context of this International Standard, therefore, any discussion of “DP-User” features, functions, or actions applies equally to the “DP-Administrator”, except in those specific cases where it is necessary to distinguish between them, and contrast the respective features of the two objects.

The main purpose for defining two ports, and two types of objects accessing those ports, is to provide a simple means for a server implementation to discriminate between normal users and administrative users in terms of the services offered. An administrative user, in general, is one who is responsible for normal operation and maintenance of a printing system, and who may therefore need to invoke operations that deal with the normal functioning of a print-server or printer. Normal users, in general, do not need to invoke those operations that are defined on the DP-Administration port.

NOTES

1	In practice, not all DP-Server implementations will implement the DP-Administration port operations, since these operations are not required in very simple DP-Servers. And those DP-Servers that do implement the operations of both ports will not necessarily distinguish between DP-Users and DP-Administrators. These decisions are the province of the particular implementation developers and site personnel, so long as an implementation conforms to one of the conformance classes defined in Annex E.

2	Within this International Standard, the generic term “user” is employed where there is no need to distinguish between the class of user: DP-User or DP-Administrator. In such cases it may be assumed that the user may be of either kind.

A port type may be defined to be either symmetrical or asymmetrical. A symmetrical port type allows any of its defined abstract-operations to be invoked or performed by either of two objects associated by paired ports of that type. Conversely, an asymmetrical port type permits its abstract-operations to be invoked by just one of the two objects, called the consumer, and performed only by the other object, the supplier.

NOTE - the terms consumer and supplier are used only to distinguish between the roles assumed by a pair of ports in invoking or performing abstract-operations.

The assignment of the terms is usually intuitive where one object is providing a service used by another object. For example, a print-server would usually be regarded as a supplier, and its users as consumers. Accordingly, the DP-User port is defined to be of the asymmetrical type, with the DP-Server object and the DP-User object defined to be the supplier and the consumer, respectively, with respect to that port.

Similarly, the DP-Administration port is also of the asymmetrical type, with the DP-Server object as the supplier and the DP-Administrator object as the consumer.

Before an object can invoke abstract-operations on another, the two objects must be bound into an abstract-association. The binding of an abstract-association between objects establishes a relationship between the objects which lasts until the abstract-association is released.

The binding of an abstract-association validates the credentials needed for two objects to interact, and establishes the application-context and security-context of an abstract-association. The application-context of an abstract-association may comprise one or more types of ports paired between the two objects.

Because the model presented is abstract, it is not always possible for an outside observer to identify the boundaries between objects, or to decide on the moment or means by which abstract-operations occur. However, in some cases the abstract model will be realized in a visible form. For example, a pair of objects which communicate through paired ports may be located in different open systems. In this case, the boundary between the objects is visible, the parts are exposed, and the operations may be supported by some form of communication between the objects.

6.1	Objects in the Document Printing environment�tc "6.1	Objects in the Document Printing environment"\l 2�

The Document Printing environment can be decomposed into one central object, the Document Print Server (DP-Server); one or more Document Printing User objects (DP-Users); and one or more Document Printing Administrator objects (DP-Administrators).

6.1.1	DP-Server object�tc "6.1.1	DP-Server object"\l 3�

This functional entity performs abstract-operations invoked by DP-Users and DP-Administrators in the Printing Environment via ports. Some of these operations are related to the printing of documents, others are used for inquiry and management purposes, and the rest are used for administrative purposes.

The formal definition of the DP-Server object is as follows:

dp-server		OBJECT�					PORTS { dp-user [S], dp-administration [S] }�					::= id-dp-server

6.1.2	DP-User object�tc "6.1.2	DP-User object"\l 3�

This functional entity may invoke operations that are related to the printing of documents and those that are used for inquiry and management purposes related to the progress of a print-job(s) or to the characteristics or status of a print-server.

The formal definition of the DP-User object is as follows:

dp-user			OBJECT�					PORTS { dp-user [C] }�					::= id-dp-user

6.1.3	DP-Administrator object�tc "6.1.3	DP-Administrator object"\l 3�

This functional entity may invoke all operations supplied by the DP-Server object.

The formal definition of the DP-Administrator object is as follows:

dp-administrator	OBJECT�							PORTS { dp-user [C], dp-administration [C] }�							::= id-dp-administrator

6.2	Ports used in the Document Print Service model�tc "6.2	Ports used in the Document Print Service model"\l 2�

The Document Print Server (DP-Server) makes its services available through the ports defined in this subclause. Two ports are defined in order to segregate the operations associated with normal printing activities, available to all users, from those operations intended for administrative control of a DP-Server.

Note that not all DP-Servers will implement the DP-Administration port, since simple servers will have no need of the administrative operations. In addition, a particular DP-Server implementation may, or may not, distinguish between DP-Users and DP-Administrators.

In conjunction with other International Standards, this International Standard provides security mechanisms to enable the accessors and accessees of these ports to determine each other's identities. However, this International Standard does not mandate the use of these security mechanisms, nor is any security policy established by this International Standard; these are the province of the implementors and using organizations.

6.2.1	DP-User port�tc "6.2.1	DP-User port"\l 3�

This port is intended for submitting service requests that are directly related to the primary function of the print-server, i.e., the printing of documents. This includes service requests related to retrieving and altering information about the status of print-jobs. This port also provides facilities for inquiring about the status and characteristics of the print-server.

This port is formally defined as follows:

dp-user-port	PORT�		CONSUMER INVOKES {�										Print,�										ModifyJob,�										CancelJob,�										ListObjectAttributes }�		::= id-pt-dp-user

6.2.2	DP-Administration port�tc "6.2.2	DP-Administration port"\l 3�

This port is intended for performing administrative functions (e.g., to exercise control over a print-server). The use of this port is intended for use only by administrative users. [But note that this is an implementation and site management policy decision, not mandated by ISO/IEC 10175.]

This port is formally defined as follows:

dp-administration-port	PORT�		CONSUMER INVOKES {�										PromoteJob,�										InterruptJob,�										PauseJob,�										ResumeJob }�		::= id-pt-dp-administration

6.3	DPA object classes�tc "6.3	DPA object classes"\l 2�

As described in the preceding subclauses, a DP-User (or DP-Administrator) is able to access the services offered by a DP-Server by invoking one or more of the operations defined for the port associated with that class of user. In order to specify completely the manner in which an operation is to be performed, the invoker generally must provide additional data in the form of an argument to the operation. In response, the DP-Server provides details of the status and outcome of an operation in the form of results.

To accomplish the action(s) requested via operation invocation, the DP-Server manages and manipulates data entities that are referred to as DPA-Objects. These DPA-Objects are simply convenient collections of data that may represent objects that are defined elsewhere. The invoker of an operation provides many of the necessary additional argument details in the form of values for some of the DPA-Object components; similarly, the server may inform a user of the status or outcome of an operation by providing values for DPA-Object components in the operation results.

The DPA-Objects are subdivided into the following classes:

a)	Job

b)	Document

c)	Printer

d)	Server

e)	Medium

f)	Font

g)	Resource

h)	Transfer-method

i)	Delivery-method

j)	Auxiliary-sheet package

k)	Auxiliary-sheet

l)	Finishing

m)	Output-method

n)	Imposition

o)	Scheduler

p)	Initial-value-job

q)	Initial-value-document

r)	Resource-context

The following subclauses provide an informal description of each of these object classes, along with their purposes and relationships to the defined operations. In this narrative, and in the remainder of this document, the term “user” will be employed to refer to both DP-Users and DP-Administrators, except when necessary to distinguish between the two. Details of the objects that comprise the respective classes are to be found in clause 9.

Conforming servers are not required to implement support for all object classes. However, a server may support certain attributes of an object class even though it does not support the class itself. The values of some attributes of some objects, such as job, document, printer, and server, identify object instances of other classes, such as medium, auxiliary-sheet-package, finishing, and imposition. Servers may implement such attributes without implementing the object classes which these attribute values identify, as long as the semantics of such attributes is implemented for the specified object instance. For example, the default-medium document attribute identifies medium object instances, such as iso-a4-white. A server need not implement the medium object class in order to implement the default-medium document attribute, as long as the server prints the document on a white ISO A4 medium.

Refer to conformance requirements detailed in Annex E to this part of ISO/IEC 10175, and in part 2 of ISO/IEC 10175.

6.3.1	Job object class�tc "6.3.1	Job object class"\l 3�

When a user invokes a Print abstract-operation, the DP-Server (also referred to generically as a print-server) creates a body of information to be used in the management and control of that operation. The action of invoking the Print operation is referred to as a print-request, and the body of information created as a result of that request is termed a print-job, or simply, job.

Various attributes of a job object convey and record information about the status, progress, and other characteristics of the job. In addition, a document to be printed is treated as a component of the job object, to be transferred transparently during the processing of the job.

Some print-servers and printers are capable of processing more than one document within a single print-job. Such multiple-document jobs require one Print abstract-operation invocation for each of the documents that comprise the job.

A job is created as a consequence of the first (or only) print-request of a related sequence of print-requests. An argument parameter of the print-request indicates whether or not it is the final print-request of the job, thus providing the delimiter for the job.

In addition to printable documents, other entities, called logical resources, may be transferred to a print-server during the course of a print-job. If such a resource is to be sent to the print-server with a print-job, the resource is conveyed by a single print-request that indicates that it is carrying a resource rather than a printable document.Examples of resources include electronic forms and overlays.

There are no restrictions on the sequencing of resource-bearing print-requests within the job, except that a resource must be present in the environment of the printer or server prior to being needed during the actual processing of the job (which normally begins after all print-requests have been submitted for the job).

6.3.2	Document object class�tc "6.2	Document object class"\l 3�

A document to be printed may be transmitted (immediately) within the sequence of parameters that compose a print-request, or it may be transferred at a later time by other means described subsequently.

In either case, each document in a print-job is represented in the print-server by a document object, which collects together summary information about the characteristics of the document and its status in the print cycle. The document object is created in response to the print-request that conveys the electronic document or provides the information by which the document is to be transferred subsequently. When a server creates a job object in response to a Print abstract-operation, each document object is contained within the job object.

6.3.3	Printer object class�tc "6.3.3	Printer object class"\l 3�

The principal object managed by a print-server is a printer. A printer object is the repository of information about the printer that the object represents. Examples of the information that may be recorded by a printer object are the printer's identity, installed features, available media and fonts, etc.

In abstract terms, a printer object can be considered a grouping of certain attributes within the associated server's environment. Indeed, in the document processing model presented subsequently, the actual printer is not referenced at all, but is simply considered a latent component of the document presentation process. In this context, a printer object may thus represent either a physical printer or a logical printer.

A physical printer object represents some form of physical device capable of rendering graphical output on some physical medium; however, ISO/IEC 10175 makes no stipulation as to the actual physical characteristics embodied in a particular physical printer.

A logical printer object represents some collection of printer characteristics that have been defined and grouped together as a convenience to users of a print-server. A single logical printer may be associated with several physical printers; conversely, a single physical printer may be associated with several logical printers. By directing a print-request to a particular logical printer, the user is informing the associated print-server that a certain predefined set of printer and server features and facilities are to be applied to the requested Print abstract-operation. By directing a print request to a particular physical printer, the user is informing the associated print-server that a particular physical printer shall be used.

The logical printer concept can also aid a print-server in managing several physical printers in a manner that is transparent to the user population. That is, while a user might be directing a print-request to a (logical) printer that embodies a certain set of features and functionality, the associated print-server might actually assign the resulting job to any one of several physical printers possessing the features implied by the logical printer attributes. This would enable the server to balance the load among its associated printers, and to remove printers from service for maintenance reasons, while still offering the same functionality to its clients.

A printer object may be specified to be either logical, physical, or both.

6.3.4	Server object class�tc "6.3.4	Server object class"\l 3�

The print-server is the entity that provides print-services to clients in a distributed system. Users desiring to print documents submit their print-requests to a print-server and receive from the print-server information concerning the status and outcome of their requests.

A server object represents a particular print-server, and is the repository of information about that particular server.

A print-server is associated with one or more printers. To the normal user, the distinction between a print-server and a physical printer may not be visually apparent, since a printer and the server associated with it may be housed in one physical entity. However, a print-server may be capable of supporting multiple printers; and the printers supported by one server need not be of the same type, model, or capabilities, and there is no need that the server and its printer(s) be collocated.

In practical terms, the printer and the associated server may be one and the same. And a physical printer may be capable of functioning as a server if so assigned by the local administrator.

ISO/IEC 10175 deals only with the application-level interface between a print server and the users of that print-server; it does not mandate any particular server/printer configuration, nor does it address the physical interconnection between a server and the printer(s) associated with it. The physical connection and access protocol(s) used between server and printer are considered implementation-specific; while it is possible to utilise the same methodology and protocol(s) to interconnect associated servers and printers as are employed in the interface between the server and the user of that server, that is neither addressed nor required by ISO/IEC 10175.

6.3.5	Medium object class�tc "6.3.5	Medium object class"\l 3�

A medium object represents a medium on which a document (or part of a document) may be rendered. The most common example is paper, but also included are transparencies and virtually any physical material or device on which an image may be rendered.

Two different categories of media are addressed: logical media and physical media. A medium object may be specified to be logical, physical, or both. A physical medium is a medium that has distinct physical characteristics such as size, weight, type or pre-printed information. The final output of a printer will normally be on physical media. A logical medium incorporates a generic set of characteristics which indicate the approximate desired effect, and which may be realized by one or more physical media. A logical medium object may include a list of physical media from which the print-server is to select.

6.3.6	Font object class�tc "6.3.6	Font object class"\l 3�

As defined in ISO/IEC 9541, a font resource consists of a collection of glyph representations together with descriptive and font metric information relevant to the collection of glyph representations as a whole. A font object is a summary of information about one particular font resource that is available for use in rendering documents during the course of a print-job.

A font object is created and managed by a print-server in response to one of two situations:

a)	the font resource is submitted with one print-request of a print-job; the lifetime of such a font is limited to the job in which the font is submitted, and may be used in printing any of the documents that compose the job;

b)	the font resource is installed on a print-server or printer by some means outside the scope of this part of ISO/IEC 10175; such fonts may be persistent, i.e., not limited to the lifetime of any one job, but not necessarily permanent.

By means of operations defined subsequently in clause 8, a DP-User may interrogate a DP-Server to determine the font resources supported by, or available through, the DP-Server.

NOTE - the term font resource is used in a generic sense; that is, depending on implementation and other considerations, a font object may represent a font resource that does not conform to ISO/IEC 9541.

6.3.7	Resource object class�tc "6.3.7	Resource object class"\l 3�

A resource object is similar to a font object, and is expected to represent some other logical resource such as an overlay or logo that may be used during the processing of a print-job.

As with font objects, a resource object is created and managed by a print-server in response to one of two situations:

a)	the resource object is submitted with one print-request of a print-job; the lifetime of such an object is limited to the job in which the object is submitted, and may be used in printing any of the documents that compose the job;

b)	the resource object is installed on a print-server or printer by some means outside the scope of this part of ISO/IEC 10175; such objects may be persistent, i.e., not limited to the lifetime of any one job, but not necessarily permanent.

6.3.8	Transfer-method object class�tc "6.3.8	Transfer-method object class"\l 3�

A transfer-method object represents one specific method available for transferring electronic documents to a print-server (and printer). For example, a print-request may convey the subject document immediately and directly, or the request argument may provide a reference to an object stored in some remote file system, which the print-server is to fetch by some other means, as indicated in the attributes of the transfer-method.

6.3.9	Delivery-method object class�tc "6.3.9	Delivery-method object class"\l 3�

A delivery-method object represents some particular means available to the print-server for delivering printed documents, logs and notifications. For example, a particular print-server might offer a secure-pickup facility with controlled access; or some means might be available for delivering the output by postal mail. Such details are recorded as attributes of the delivery-method object.

6.3.10	Auxiliary-sheet-package object class

An auxiliary-sheet-package object represents a set of one or more auxiliary-sheets that are to be printed at positions relative to a job or relative to the documents in a job. For jobs, the auxiliary-sheets are to be printed before job components (job result sets and job copies), after components and/or between components of the same type. For documents, the auxiliary-sheets are to be printed before document components (document sets and document copies), after components and/or between components of the same type. A set of standard object identifiers representing various combinations of auxiliary-sheets is specified to facilitate interoperability.

6.3.11	Auxiliary-sheet object class�tc "6.3.11	Auxiliary-sheet object class"\l 3�

An auxiliary-sheet object represents a particular form of auxiliary-sheet that may be printed at the beginning of the requested print output, or at the end of the output, or between different parts of a print-job output to separate them. Different print-servers will have different numbers and formats of such things available, summarized by the auxiliary-sheet objects.

6.3.12	Finishing object class�tc "6.3.12	Finishing object class"\l 3�

Finishing encompasses the different kinds of processes that may be applied to printed output to produce completed documents. This includes such things as stapling (with various characteristics), binding, hole-punching or drilling, etc. Each specific kind of finishing available on a particular printer may be represented by a finishing object, which records the characteristics of the process, and provides an identifier by which it may be invoked.

A finishing object may be characterized and defined as either logical or physical, or both.

A physical finishing object defines the characteristics of a particular finishing process or mechanism that can be applied by one or more printers. A stapler installed on a printer is an example of such a physical mechanism; it would be represented in the server by a finishing object that details the features and parameters of the mechanism.

A logical finishing object, conversely, describes a finishing effect, but not necessarily the process or mechanism to be employed to achieve the effect. Thus, for example, a request for 3-hole punching of a document could be achieved by a punch or drill mechanism, or by substitution of a prepunched medium that otherwise satisfies the specified medium characteristics.

In addition, a logical finishing object can specify a set of finishing processes that are to be applied in sequence. For example, a single logical finishing object could be defined to cause an output document to be: (1) punched for eventual insertion into a 2-ring binder, (2) stapled along one edge, and (3) bound with tape. The entire set of finishing processes could then be invoked in a print-request by referencing the finishing object by means of its assigned identifier.

6.3.13	Output-method object class�tc "6.3.13	Output-method object class"\l 3�

Output-method objects represent an additional family of operations that may be applied to the output of a print-job. Such actions as sorting and collating are examples of output-methods.

6.3.14	Imposition object class�tc "6.3.14	Imposition object class"\l 3�

Some print-servers may provide one or more utility functions that can be applied to a composed (electronic) document to alter its description prior to imaging and rendering the document on the output medium. The members of one group of such utility functions are termed convenience impositions

The imposition object describes the placement of multiple logical page images onto a single physical page, such as 2-up or 4-up. In 2-up imposition, consecutive pairs of page images are selected from the composed document, and transformed such that the page images are rotated 90 degrees, reduced in size, and printed side-by-side, i.e., two page images on one surface of a physical sheet.

This International Standard defines several imposition objects, but a site might define special imposition objects with behavior that is different from the impositions performed by the standard objects or the standard numeric values of the number-up document attribute.

Note 1 - the number-up attribute value is either (1) a non-negative integer or (2) a simple-name or an OID that names an imposition object.

When an imposition object has been defined on a printer/server, an imposition function can be invoked in a print-request by supplying the identifier of the imposition object that represents it.

An imposition object describes an imposition effect, but not the method to be employed to achieve the effect. Further, the definition of an imposition object is independent of any physical details of the printer used to render the requested output.

NOTE 2 - the behavior of the imposition object depends on the values of other attributes.

6.3.15	Scheduler object class�tc "6.3.15	Scheduler object class"\l 3�

Print servers may support different scheduling algorithms for selecting and processing print-jobs on different printers. The details of such algorithms are outside the scope of ISO/IEC 10175. Summary information about such algorithms, however, may be collected in a scheduler object, enabling administrators to create and select different algorithms, and users to inquire about those available and currently in effect.

6.3.16	Initial-value-job object class�tc "6.3.16	Initial-value-job object class"\l 3�

Initial-value-job objects contain the attributes of the job class that the server may default when constructing or processing a job object. Initial-value-job objects may be referenced explicitly by a print-job or indirectly through a printer object.

The server shall maintain an initial-value-job object with the same set of attributes that the job object class supports and that may be specified on a print-request. There are, however, some exceptions and these attributes are listed in subclause 9.17.

6.3.17	Initial-value-document object class�tc "6.3.17	Initial-value-document object class"\l 3�

Initial-value-document objects contain the attributes of the document class that the server may default when constructing or processing a document object. Initial-value-document objects may be referenced explicitly by a document or indirectly through a printer object.

The server shall maintain an initial-value-document object with the same set of attributes that the document object class supports and that may be specified on a print-request. There are, however, some exceptions and these attributes are listed in subclause 9.18.

6.3.18	Resource-context object class�tc "6.3.18	Resource-context class"\l 3�

Resource-context objects encapsulate details about the server's environment which, when used with a resource name, uniquely identify a resource in the server's environment. Certain information about a server's environment, for example the file system structure, need not be known by a client. This object encapsulates such details, allowing the client to identify resources on a name only basis. It also allows administrators to change the location of resources on a system without requiring corresponding changes in the client.

Since resource-context objects reside in the domain of the server, a client may not be able to predetermine if a name for a resource-context is an explicit reference in the domain of the server, and hence should be represented as a Text name, or a resource-context object name as identified by the name CHOICE of the NameOrOid data type. Therefore, a conforming client shall pass the name of a resource-context object in the name field of the NameOrOid CHOICE of the ResourceContext data type. Upon receipt of an attribute with this data type, the server shall determine if this name is the name of a resource defined explicitly in the domain of the server (e.g. the filename of a resource). If so, the server shall recast the value of the attribute from the name field of the NameOrOid data type to the Text data type.

6.3.19	Derived classes and class inheritance for implementor extensions�tc "6.3.19	Derived classes and class inheritance for implementor extensions"\l 3�

In the object oriented (OO) concept of class inheritance, the specification of a derived class includes all of the attributes and operations of the base class, but adds additional attributes and/or operations that are relevant to the specialized derived class. In other words, the base class is more generic and the derived class is more specialized.

Each object of an object class, including all derived classes of the base class, shall have an unambiguous name or identifier. In other words, no two objects of the same object class or any of its derived classes shall have the same name or identifier.

ISO/IEC 10175-1 does not use object class inheritance in defining any of its standard object classes, for reasons of not introducing such a powerful tool when it is not really needed. However, implementors may wish to use the class inheritance approach to adding attributes to objects defined by ISO/IEC 10175, though they are not required to when adding implementor-defined attributes. See 8.2.4.4 for a complete example of implementor-defined derived classes for the printer class.

6.3.20	Events and event classes�tc "6.3.20	Events and event classes"\l 3�

Different classes of abstract-events are defined in ISO/IEC 10175 in a manner similar to that of object classes.

An event indicates that something has occurred during the processing of a print-job, or in the operation of a printer or server. An event may be expected (e.g., the change in state of a job), or it may be an abnormal occurrence (e.g., an error). Every error detection is an event, but not all events involve errors.

Both event types and event classes are defined. The former are used to identify the specific event (e.g., the error event that signifies a specified deadline has passed) while the latter enable the user to identify the sets of events for which the server is to provide notifications (e.g., “log all error events”). See 8.5 for further details about event types and event classes.

Subclause 9.2.3 defines the job-event-handling attributes which are utilized to convey the event information. These attributes enable clients to indicate which events and event classes are to be logged for later analysis, and which are to cause notifications to be sent to the client immediately. ISO/IEC 10175 does not dictate any rules governing the use of these logs or notifications, however; these aspects are outside the scope of this International Standard.

6.4	Attributes�tc "6.4	Attributes"\l 2�

Each DPA-Object is represented by a set of attributes which characterize that object. That is, each attribute provides a piece of information about, or derived from, the object to which it corresponds. DPA employs attributes to identify the objects upon which to operate, to affect and modify the manner in which an operation is performed, to return details of the status and outcome of an operation, and to provide information about DPA-Objects.

In general, the principal reason for using attributes in an abstract-service definition is the ability to extend the facilities provided by a particular implementation, without the necessity of revising the governing standard. Each instance of an attribute includes both an identifier for that particular attribute-type, followed by a structure containing zero or more value elements appropriate to that attribute-type. Because of this consistent, self-identifying form, it is possible in DPA to define and integrate a new attribute-type into a print-server implementation in order to provide access to some new facility, and for a print-client implementation to integrate and use the new attribute-type as soon as the new facility is available.

The attribute concept and the associated ASN.1 specifications originated in the OSI Directory standard (ISO/IEC 9594-2). However, certain requirements of the Document Printing Application necessitated changes to the original definitions. For this reason, revised versions of these definitions appear, and are utilized in, ISO/IEC 10175.

6.4.1	The attribute-type�tc "6.4.1	The attribute-type"\l 3�

A DPA attribute consists of an attribute-id component, which identifies the specific type of attribute, and the corresponding attribute-values component, which encapsulates the information to be conveyed by the attribute. Figure 6-2 illustrates the attribute concept.

�embed MSDraw * mergeformat ���

Figure 6-2 - General Structure of Attributes

The DPA attribute is formally defined by the following ASN.1 production:

Attribute	::= SEQUENCE {�		attribute-id				[0] AttributeId,�		attribute-values		[1] SET OF ANY -- DEFINED BY attribute-id -- }

Particular DPA attributes are referred to as attribute-types. All attributes of a given object must be of distinct attribute-types; i.e., for any particular object instance, no more than one instance of any particular attribute-type may exist at one time.

6.4.2	Attribute-id�tc "6.4.2	Attribute-id"\l 3�

Some attribute-types are standardized by ISO/IEC 10175. Other attribute-types will be defined by national administrative authorities and private organizations. Some externally defined attribute-types will not be specific to DPA such as, for example, security attributes. This implies that a number of separate authorities will be responsible for assigning types in a way that ensures that each is distinct from all other assigned types. This is accomplished by identifying each attribute-type with an object identifier when the attribute-type is defined.

AttributeId ::= OBJECT IDENTIFIER

Attribute-types defined by ISO/IEC 10175 are specified in clause 9. The procedures for constructing and registering object identifiers for other attribute-types may be found in ISO/IEC 8824; registration and dissemination of information regarding these attribute-types is the responsibility of the organizations that define them.

6.4.3	Attribute-values�tc "6.4.3	Attribute-values"\l 3�

Defining an attribute-type also involves specifying the ASN.1 datatype to which every value in such attributes must conform. As defined above, the datatype of the attribute-values component is the same for all attribute-types, i.e., SET OF ANY. However, encapsulated within each attribute-value are value elements whose types are specifically defined for each attribute-type, and identified by means of the associated attribute-id.

For some attribute-types, the attribute-values component may contain no more than a single element of the specified type. Such an attribute-type is said to be single-valued. For others, an attribute-values may (but need not) contain more than one component, all of the same ASN.1 datatype. Such an attribute-type is said to be multi-valued. Whether an attribute-type is single-valued or multi-valued is stated when the attribute-type is defined (see 6.4.4.1).

6.4.4	Attribute-type definition�tc "6.4.4	Attribute-type definition"\l 3�

In summary, the definition of an attribute-type involves :

a)	assigning an object identifier to the attribute-id;

b)	indicating or defining the datatype of the associated attribute-values element;

c)	indicating whether an attribute of this attribute-type may have more than one value (i.e., whether the attribute-values element may contain more than one component of the specified type);

d)	indicating whether an attribute of this attribute-type may be used for filtering using equality, substring, and/or ordering or set-valued relations (see subclause 6.4.5).

NOTE - A filter may always test for the presence or absence of an attribute of a particular attribute-type.

6.4.4.1	The ATTRIBUTE macro

The following ASN.1 macro is used to define an attribute-type:

ATTRIBUTE MACRO ::= �BEGIN�	TYPE NOTATION		::= AttributeSyntax Multivalued | empty�	VALUE NOTATION		::= value (VALUE OBJECT IDENTIFIER)�	AttributeSyntax			::= "WITH ATTRIBUTE-SYNTAX" SyntaxChoice�	Multivalued					::= "SINGLE VALUE" | "MULTI VALUE" | empty�	SyntaxChoice					::= value (ATTRIBUTE-SYNTAX) Constraint �											| type MatchTypes�	Constraint					::= "(" ConstraintAlternative ")" | empty�	ConstraintAlternative	::= StringConstraint | IntegerConstraint�	StringConstraint			::= "SIZE" "("SizeConstraint")"�	SizeConstraint				::= SingleValue | Range�	SingleValue					::= value (INTEGER)�	Range							::= value (INTEGER)".." value (INTEGER)�	IntegerConstraint			::= Range�	MatchTypes					::=	"MATCHES FOR" Matches | empty�	Matches						::=	Match Matches | Match�	Match							::=	"EQUALITY" | "SUBSTRINGS" | "ORDERING" |�												"SET-COMPARISON" | "SET-INTERSECTION"�END

The correspondence between the parts of the definition and the various pieces of the notation introduced by the macro is as follows:

a)	the object identifier assigned to the attribute-id is the value supplied in the value assignment of the macro;

b)	the datatype of the attribute-values element(s) is that indicated by the AttributeSyntax production: a separately defined attribute-syntax identified by an object identifier and matching rules. A size constraint for underlying string types or a value range for an underlying integer type may optionally be indicated;

c)	the attribute is single valued if the Multivalued production is SINGLE VALUE and may have more than one value element if it is MULTI VALUE or empty.

NOTE - The attribute macro defined above is derived from ISO/IEC 9594-2, but has been revised to incorporate additional matching rules (see 6.4.5.1). Matching rules are discussed in 6.4.4.3.

6.4.4.2	Attribute-syntax definition

The definition of an attribute-syntax involves:

a)	assigning an object identifier to the attribute-syntax;

b)	indicating the datatype, in ASN.1, of the attribute-syntax;

c)	defining appropriate rules for matching an asserted value with a target attribute value. None, some, or all of the following matching rules may be defined for a particular attribute-syntax:

1)	equality. Applicable to any attribute-syntax. The asserted value must conform to the datatype of the attribute-syntax;

2)	substrings. Applicable to any attribute-syntax with a string datatype. The asserted value must be a sequence ('SEQUENCE OF'), each of whose elements conforms to the datatype;

3)	ordering. Applicable to any attribute-syntax for which a rule can be defined that will allow an asserted value to be described as less than, equal to, or greater than a target value. The asserted value must conform to the datatype of the attribute-syntax.

4)	set-comparison. Applicable to any attribute-syntax for which a rule can be defined that will allow an asserted value, or set of value elements, to be described as a subset or superset of the identified attribute-values set. The asserted value(s) must conform to the datatype of the attribute-syntax.

5)	set-intersection. Applicable to any attribute-syntax for which a rule can be defined that will allow an asserted value to be described as having one or more members in common with the identified attribute-values set. The asserted value(s) must conform to the datatype of the attribute-syntax.

If no matching rule is defined, the DP-Server:

a)	treats values of attributes of this attribute-syntax as having the type ANY, i.e., the DP-Server does not check that those values conform with the datatype indicated for the attribute-syntax;

b)	shall not attempt to match asserted values against target values of such an attribute-type.

If a matching rule is defined, the DP-Server:

a)	treats values of attributes of this attribute-syntax as having type ANY defined by the datatype indicated for the attribute-syntax;

b)	shall only match according to the matching rules defined for that attribute-syntax;

c)	shall only match an asserted value of a suitable datatype.

6.4.4.3	The ATTRIBUTE-SYNTAX macro

The following ASN.1 macro is used to define attribute-syntaxes:

ATTRIBUTE-SYNTAX MACRO ::= �BEGIN�	TYPE NOTATION	::= Syntax MatchTypes | empty�	VALUE NOTATION	::= value (VALUE OBJECT IDENTIFIER)

	Syntax					::=	type�	MatchTypes			::=	"MATCHES FOR" Matches | empty�	Matches				::=	Match Matches | Match�	Match					::=	"EQUALITY" | "SUBSTRINGS" | "ORDERING" |�										"SET-COMPARISON" | "SET-INTERSECTION"�END

The correspondence between the parts of the definition and the various pieces of the notation introduced by the macro is as follows:

a)	the object identifier assigned to the attribute-syntax is the value supplied in the value assignment of the macro;

b)	the datatype of the attribute-syntax is that identified by the Syntax production, i.e., that following the macro name;

c)	the defined matching rules are equality, if "EQUALITY" appears in the MatchTypes production, substrings if "SUBSTRINGS" appears, ordering if "ORDERING" appears, set-comparison if SET-COMPARISON appears, and set-intersection if SET-INTERSECTION appears. If the production is empty, then no matching rules are defined.

	Should the "empty" alternative of the notation be selected, the resulting notation ("ATTRIBUTE-SYNTAX") can be used to denote any possible attribute-syntax.

NOTES

1	The attribute-syntax macro defined above is derived from ISO/IEC 9594-2, but has been revised to incorporate additional matching rules. (see 6.4.5.1)

2	No support is provided in the macro for actually defining the matching rules themselves: this must be done by natural language or by other means.

6.4.5	Filters

A filter parameter specifies a test that is either satisfied by a particular DPA-Object or not. The Filter is expressed in terms of assertions about the (1) presence or (2) values of certain attributes of the DPA-Object; the test is satisfied if and only if the Filter evaluates to true.

Filter ::= CHOICE {�		item		[0]	FilterItem,�		and			[1]	SET OF Filter,�		or				[2]	SET OF Filter,�		not			[3]	Filter }

A Filter is either a FilterItem, or an expression involving simpler Filters combined by using the logical operators and, or, and not.

Where the Filter is:

a)	an item, it is true if and only if the corresponding FilterItem is true;

b)	an and, it is true unless any of the Filters in the SET are false;

NOTE - Thus, if there are no Filters in the SET, the and evaluates to true.

c)	an or, it is false unless any of the Filters in the SET are true;

NOTE - Thus, if there are no Filters in the SET, the or evaluates to false.

d)	a not, it is true if and only if the specified Filter is false.

6.4.5.1	Filter-item

A FilterItem is an assertion about the (1) presence or (2) value(s) of a particular attribute-type in the DPA-Object under test. Each such assertion is either true or false.

SubstringMatchCriteria ::= ENUMERATED {�	exact (0),�	case-insensitive (1),�	same-letter (2), -- ignoring accents, case, etc.�	approximate (3) -- implementation-defined -- }

FilterItem ::= CHOICE {�	equality								[0] AttributeValueAssertion,�	substrings							[1] SEQUENCE {�			attribute-id						[0] AttributeId,�			match-criteria					[1] SubstringMatchCriteria,�			initial-string					[2] ANY OPTIONAL,	-- DEFINED BY attribute-id�			any-string							[3] SEQUENCE OF ANY OPTIONAL,�																-- DEFINED BY attribute-id�			final-string						[4] ANY OPTIONAL },	-- DEFINED BY attribute-id

	greater-or-equal					[2] AttributeValueAssertion,�		-- asserted value is greater than or equal to the attribute value�	less-or-equal						[3] AttributeValueAssertion,�		-- asserted value is less than or equal to the attribute value�	present								[4] AttributeId,�		-- asserted attribute is present (with any value) �	subset-of								[5] AttributeValueAssertion,�		-- asserted value is a subset of attribute value �	superset-of							[6] AttributeValueAssertion,�		-- asserted value is a superset of attribute value �	non-null-set-intersection 	[7] AttributeValueAssertion,�		-- at least one of the members of the asserted value is present �		-- in the attribute value -- }

Every FilterItem includes an attribute-id that identifies the particular attribute concerned.

Any assertion about the value of such an attribute is only evaluated if the attribute-id is recognized and defined for the DPA-Object, and the purported attribute-values conforms to the attribute-syntax defined for that attribute-type.

NOTE 1 - The AttributeError invalid-attribute-syntax is reported if the purported attribute-values does not conform to the attribute-syntax. No error is reported if the attribute-type is not defined for the object instance.

Assertions about the value of an attribute are evaluated using the matching rules associated with the attribute-syntax defined for that attribute-type. A matching rule not defined for a particular attribute-syntax cannot be used to make assertions about that attribute.

NOTE 2 - The AttributeError inappropriate-matching is reported if the matching rule was not defined for that attribute-type.

Where the filter-item asserts:

a)	equality, it evaluates to TRUE if and only if the value supplied in the assertion is equal to the value of the attribute.

	If the subject attribute is multi-valued, the assertion evaluates to true if and only if the set of members supplied in the assertion is equal to the set of members in the attribute value.

b)	substrings, it evaluates to TRUE if and only if all of the substrings specified in the assertion appear in the attribute in the given order; the substrings must be non-overlapping, and may be separated from the ends of the attribute-value and from one another by zero or more string elements.

	If initial-string is present, the substring shall match the initial substring of the attribute value; if final-string is present, the substring shall match the final substring of the attribute value; if any-string is present, each of the specified component substrings shall match a substring in the attribute value, in the order specified.

	If the subject attribute is multi-valued, the assertion shall contain exactly one member, i.e., one sequence of substrings that will be matched separately to each member value of the subject attribute; the assertion evaluates to true if and only if the supplied value evaluates to TRUE for at least one member of the attribute value, as defined above..

c)	greater-or-equal, it evaluates to true if and only if the value supplied in the assertion is greater than or equal to the value of the attribute.

	If the subject attribute is multi-valued, the assertion shall contain exactly one member; the assertion evaluates to true if and only if the supplied value is greater than or equal to at least one member of the attribute value.

d)	less-or-equal, it evaluates to true if and only if the value supplied in the assertion is less than or equal to the value of the attribute.

	If the subject attribute is multi-valued, the assertion shall contain exactly one member; the assertion evaluates to true if and only if the supplied value is less than or equal to at least one member of the attribute value.

e)	present, it evaluates to true if and only if such an attribute is present in the object.

f)	subset-of, it evaluates to true if and only if all of the assertion value is present in, or lies within, the attribute value.

	This matching rule applies both to multi-valued attributes and to single-valued attributes that specify:

(1) ranges, {PTC 4.1]

(2) or two-dimensional areas,

(3) sequences of a single type.

	In the case of multi-valued attributes, the assertion evaluates to TRUE if and only if each of the assertion value members is present in the attribute value set.

	For attributes.that specify a range (or two-dimensional area), the assertion evaluates to TRUE if and only if the assertion range|area lies within the attribute value range|area. For examples, see 9.1.5.16, IntegerRange and integerRangeSyntax, and 9.1.5.47, Area and areaSyntax.

	In the case of single-valued sequence types (other than range or area types), the assertion evaluates to TRUE if and only if each of the assertion value members is present in the attribute value sequence, and the assertion value members are in the same sequence as the attribute value members..

g)	superset-of, it evaluates to true if and only if all of the attribute value is present in, or lies completely within, the assertion value.

	This matching rule applies both to multi-valued attributes and to single-valued attributes that specify:

(1) ranges,

(2) or two-dimensional areas,

(3) sequences of a single type.

	In the case of multi-valued attributes, the assertion evaluates to TRUE if and only if each of the attribute value members is present in the assertion value set.

	For attributes.that specify a range (or two-dimensional area), the assertion evaluates to TRUE if and only if the attribute range|area lies within the assertion value range|area. For examples, see 9.1.5.16, IntegerRange and integerRangeSyntax, and 9.1.5.47, Area and areaSyntax.

	In the case of single-valued sequence types (other than range or area types), the assertion evaluates to TRUE if and only if each of the attribute value members is present in the assertion value sequence, and the attribute value members are in the same sequence as the assertion value members..

h)	non-null-set-intersection, it evaluates to true if and only if at least one of the assertion members is present in the attribute value.

	This matching rule applies only to multi-valued attributes, and to single-valued attributes that specify:sequences of a single type.

NOTE 3 - An ordering rule must be stated for each different datatype used as the syntax of an attribute for which "MATCHES FOR ORDERING" is declared (i.e., an attribute which may be the object of greater-or-equal and less-or-equal attribute-value-assertions).

6.4.5.2	Attribute-value-assertion

An AttributeValueAssertion is a proposition concerning the values of a DPA-Object, which, in the context of that object instance and matching relation, may be true, false, or undefined. It involves an attribute-id and an attribute-values:

AttributeValueAssertion ::= SEQUENCE {�		attribute-id					[0] AttributeId, �		attribute-values			[1] SET OF ANY -- DEFINED BY attribute-id -- }

and is:

a)	undefined, if any of the following holds:

	1) the attribute-type is not present in the DPA-Object;

	2) the definition of the attribute-type cannot be matched for the specified matching relation (i.e., equality, substrings, ordering, set-comparison, or set-intersection);

	3) the attribute-values component of the assertion does not conform to the datatype defined for the attribute-values component of the specified attribute-type;

b)	true, if the DPA-Object contains an attribute of that attribute-type whose attribute-values component matches the attribute-values component in the assertion, according to the associated matching rule;

c)	false, otherwise.

6.4.6	Compulsory and non-compulsory attributes�tc "6.4.6		Compulsory and non-compulsory attributes"\l 3�

Normally, a print-server is expected to honour a print-request explicitly. That is, a print-server will attempt to satisfy each and every parameter of the print-request exactly as submitted; unless instructed otherwise, a print-server shall reject any print-requests that cannot be honored completely, as specified.

However, the Document Printing Application assumes that there will exist many different print-server configurations and software implementations, with potentially a large variation in the set of features and resources available at a particular print-server. Likewise, because DPA utilizes the inherent extensibility of the attribute-type to model argument and result parameters, it is assumed that many different attributes will be defined over time; and it is assumed that not all of these attributes will be understood by all print-servers or print-clients.

Conversely, print-clients acting on behalf of human users will have different requirements. In some cases documents must be rendered exactly as specified; no substitutions can be allowed in font, choice of media, or finishing operations for example. But in many other cases the human-user wants only to print a set of documents (e.g., mail messages) in some form; the choice of font, media, etc., is of little importance, as long as readable documents are produced.

In order to deal consistently with this variability in user-requirements and available functionality, DPA provides print-clients with a means of indicating that certain print-request attributes are non-compulsory. Two attribute-types exist for this purpose: job-non-compulsory-attributes and non-compulsory-attributes, defined in subclauses 9.2.1.11 and 9.3.3.5, respectively. As indicated by their names, they enable clients to identify attributes of the job-object and the document-object that are to be treated as non-compulsory.

If an attribute-type is submitted in a print-argument and is not identified as non-compulsory:

a)	the server shall recognize the attribute-id, and shall understand the semantics of the attribute and its value;

b)	the requested attribute and value shall be supported (in the case of several compulsory attributes, all on the assigned printer(s).

If either of the above conditions cannot be satisfied, the server shall return an AttributeError and reject the job. The AttributeProblem reported in each case shall be, respectively:

a)	undefined-attribute-type and

b)	unsupported-attribute-type and unsupported-attribute-value.

If an attribute-type has been identified as non-compulsory by means of either the job-non-compulsory-attributes or the non-compulsory-attributes attribute-type, the server is allowed to ignore the attribute or the attribute value, or take a default action, but ONLY if it does not understand or support the semantics of the attribute or its value.

In the case where not all non-compulsory attributes are supported on any associated printer, and the client has not specified a particular physical printer, the server may select a printer for the job in an implementation-dependent but consistent and reproducible manner. That is, the selection algorithm must always select the same printer, given the same set of print-request attributes, and the same conditions of server and printer state and resource availability.

If a server ignores attributes at the time of their submission in a print-request, they are included in the status information returned to the client, with the indication that they have been ignored.

In some cases, however, it may not be discovered until later, during the processing of the print-request, that certain attributes must be ignored. To accommodate such cases, the client can request to be notified of these events, and can query the server to obtain the ignored attributes.

Whether an attribute is compulsory or non-compulsory is applicable throughout the life of a job. That is, if a job has been accepted, but the server determines subsequently that the value of some compulsory attribute cannot be satisfied, the server shall abort the job.

Conversely, if an attribute has been identified as non-compulsory, the effect of the attribute may be ignored, regardless of where in the processing cycle it is determined that the attribute cannot be satisfied.

This situation could occur for example if the client has specified some medium that was available at print-request time, but which has been depleted prior to completion of the job, and which will not be available prior to expiration of a local timeout condition (e.g., job-deadline-time or job-discard-time -- see 9.2.4.7 or 9.2.4.8). In both cases, the requested medium would be scheduled for the job at print-request time; but the job would be aborted when it is discovered that the media is no longer available if the medium is compulsory, whereas a different medium would be substituted and the job completed if the medium selection attribute was identified as non-compulsory.

NOTE - In order to avoid having a large number of jobs rejected, print-client and user-interface implementations should be prepared to designate print-argument attributes as non-compulsory except where the user explicitly requires the attribute values to be honoured. In addition, a print-server implementation should include substitution for non-compulsory attribute values where ignoring the unsupported attribute value is not sufficient.

6.5	Document Processing and Print Operation Models�tc "6.5	Document Processing and Print Operation Models"\l 2�

Figure 6-1 in the introduction to this clause illustrates the basic relationship between the principal entities involved in the Document Printing Application: the DP-Server on one side of the operational interface, and the DP-User and DP-Administrator on the other. Additional views of the Document Printing Application are provided by two models described in this subclause: the Document Processing Model and the Print Operation Model.

The Document Processing Model is presented in Figure 6-3. This model identifies the two primary forms that an electronic document may take during its progress from initial creation to presentation, and the three fundamental processes involved in the life of the document.

�embed MSDraw * mergeformat ���

Figure 6-3 - Document Processing Model

The Creation and Editing Process generates the character text and graphics which comprise the logical content of the document and the logical document structure. This information is represented as a RevisableForm Document. The Composition and Layout Process formats the character text and graphics contained in the revisable form document for presentation, and incorporates the composition and layout decisions in a Final Form Document. The Presentation Process renders the final form document in visible form.

The model presented here is highly simplified in order to clearly illustrate its basic aspects. In practice this sequence is often highly recursive, and may be repeated many times in many variations during the life of the document. For example, a document such as this International Standard must be edited, composed and printed many times before it is ready for publication. And it is important to note that this model does not indicate where the respective processes are invoked or executed, or where the revisable form or final form documents reside during their lifetimes, or how many copies of each may exist at any given time; these details are purposely not defined, to avoid mandating any particular architecture, system configuration or implementation details beyond those required to realize the model as shown.

The Print Operation Model, illustrated in Figure 6-4, is an informal refinement of the Document Printing Abstract Model discussed previously. Its purpose is to aid in the understanding of the concepts and abstract entities involved; as with the Document Processing Model, the Print Operation Model it is not intended to specify any particular implementation. The major processes are characterized, along with their interrelationships, in terms of the flow of data and control among them.

The key concepts of these two models are discussed further in the following subclauses.

�embed MSDraw * mergeformat ���

6.5.1	Objects in the DP-User environment�tc "6.5.1	Objects in the DP-User environment"\l 3�

One major process is shown in the DP-User environment, the Print-Client. The Creation and Editing Process and the Composition and layout Process are both very closely associated with the DP-User, but they are not shown in the DP-User's immediate environment since they may occur elsewhere. Other processes may be in, or related to, the DP-User's environment as well, but they are outside the scope of this discussion.

The Print-Client is the interface between the initial requester of printing and the DP-Server itself. The print-client accepts and acquires details of the requested printing action, transforms them into the form expected by the DP-Server, and collects them into a print-request consisting of the identity of the abstract-operation to be invoked, and the argument parameters to that operation. The completed request is then transferred to the desired DP-Server by the supporting protocol layers.

The argument parameters included with the print-request are referred to collectively as Print Operation Parameters (POP). As illustrated in Figure 6-4, they may be subdivided into Print Operation Management Instructions (PMI) and Document Production Instructions (DPI).

As described previously (see 6.3.1) a print-job may encompass the printing of more than one document (and/or the downloading of one or more resources). Such jobs, referred to as multiple-document jobs, require one print-request for each document and each logical resource to be transferred to the server. The Composition and Layout Process transforms documents to be printed from their original revisable form into a form that is suitable for a printer to deal with. In the case of modern page description languages, it is the composition and layout process that supplies the additional information concerning precise placement of text and graphics on the pages, information about fonts to be used, etc. Note that some revisable formats may actually be in a form that some class of printers can deal with directly, without requiring a separate composition and layout process to be invoked. The rationale and details concerning different document formats are subjects of other standards, and are outside the scope of ISO/IEC 10175.

The composition and layout process does not necessarily reside in the same physical system as the Print-Client, nor is that process necessarily invoked at the same time a print-request is made; the only requirement is that the document be available in the required printable form at the time it is conveyed to the document presentation process. It is also not a requirement that the document to be printed be resident on the same physical system as the Print-Client. The Print-Client may instead supply a reference to the document when the print-request is invoked, enabling the transfer to be made independently of the association between the Print-Client and the Print-Server. Thus, in those systems that support the necessary facilities, the Print-Client may supply a reference to the document that will enable the Print-Server to acquire the document from a remote filestore, for example, by some means independent of the protocol used to transfer the print-request.

6.5.2	Objects in the DP-Server environment�tc "6.5.2	Objects in the DP-Server environment"\l 3�

The abstract DP-Server environment includes one process that may be called a Print Operation Manager, one or more Document Presentation Processes, and optionally, one or more Utility Processes. Other processes may be included as well, but they are outside the scope of this discussion.

The Print Operation Manager is the counterpart of the Print-Client, and is that part of the print-server that interfaces with the print-client for the purpose of accepting print-requests and providing the client with status and completion information regarding print-requests. The print-operation manager coordinates the activities of the other processes involved in the processing of print-requests, scheduling print-jobs, managing print queues, passing acquired data to the other processes, etc. The print operation manager deals with the print operation parameters passed in a print-request and may relay them to one of the other processes for action.

A Document Presentation Process is the counterpart of a specific type of composition and layout process. For example, an SPDL composition and layout process formats a document in accordance with the SPDL standard (ISO/IEC 10180); likewise there must be a corresponding SPDL presentation process in order to interpret the content of an SPDL document, and prepare it for output to a printer or other presentation device.

In addition to dealing with a specific document format, a presentation process also may be passed a subset of the print operation parameters, referred to collectively as Document Production Instructions. This subset concerns the final structure and appearance of the document to be printed, and may include binding and finishing instructions as well. Some document formats permit document production instructions to be carried within the document itself, as well as in the print-request parameters that are transferred outside of the document. In those cases where a specific type of production instruction appears in both the print-request and the document, it is the responsibility of the presentation process to resolve precedence. Such precedence rules must be specified in conjunction with the particular document format specification, and are outside the scope of ISO/IEC 10175.

Some print-servers may include one or more Utility Processes to provide some additional functions for clients. Examples include convenience imposition functions capable of altering the structure of a formatted (electronic) document such that multiple page images may be rendered on each sheet of paper; such functions facilitate the production of booklets, etc. In addition, a utility process could be included to format a document for printing, e.g., in the case of an ODA processable form document.

6.5.3	Resources�tc "6.5.3	Resources"\l 3�

The Document Printing Application deals with resources in two basic forms: physical and logical. Physical media such as paper, transparencies and preprinted forms are examples of physical resources.

Logical resources are electronic representations of objects that may be referenced by, or used in combination with, a printable-document to render the final printed output. Examples of logical resources are fonts, and overlays such as electronic forms, logos and signatures.

Logical resources may exist, and be accessed, in two forms:

a)	Environment -- a logical resource is usually found in the environment of the printer at the time of need; i.e., either it has been installed previously on the printer, or on the associated print-server, or it has been made available to be retrieved from some node within the distributed network;

b)	Intra-job -- alternatively, or in addition, one or more logical resources may be transmitted to the server (and printer) within the stream of documents that comprise a print-job.

Logical resources in the environment are considered to be persistent; i.e., they have lifetimes that transcend the duration of any particular print-job that references them. They are installed in the environment by methods that are outside the scope of this part of ISO/IEC 10175.

Logical resources that are conveyed within the job-stream are referred to as job-resources, and are treated in basically the same manner as printable-documents. That is, the transfer of each job-resource is accomplished by means of a Print abstract-operation, and each is assigned a document sequence number indicating its position within the job-stream. In addition, a simple resource-name is supplied in the print-argument, and assigned to the associated job-resource.

Job-resource instances are considered to be transient, lasting only for the duration of the job in which they are transferred. However, a resource of this type can be referenced any number of times, from any document or any other resource in the job.

A logical-resource is accessed within a job by means of a resource-name, and possibly, a resource-context. For resources transferred within the job-stream, the simple-name supplied with the document-resource is sufficient to identify the required resource. In the case of resources to be obtained from somewhere in the distributed environment, the name of the requested resource may need to be combined with a resource-context to form a fully-qualified name, which then specifies a path to the required resource.

ISO/IEC 10175 defines attributes which enable a client to specify several different contexts, and a sequence for searching them, in order to resolve references to logical resources.

NOTES

1	Numerous variations exist in the standards and conventions that govern the naming and referencing of different kinds of logical resources. For this reason, the present version of ISO/IEC 10175 does not mandate any structure for the resource-name, nor does it specify how the resource-contexts are to be used to search for a particular resource. These details are considered implementation-specific at this time. Future versions of ISO/IEC 10175 may provide additional specificity, however.

2	Fonts transferred as job-resources within a job may be referenced by simple resource-names, but fonts that are to be accessed from the distributed environment, should be referenced by means of the conventions defined by ISO/IEC 9541.

6.5.4	Reference Coordinate System (RCS)�tc "6.5.4	Reference Coordinate System (RCS)"\l 3�

The Reference Coordinate System (RCS), illustrated in Figure 6-5, is defined in the SPDL Standard (ISO/IEC 10180) to provide for unambiguous specification of locations on the medium.

The Document Printing Application employs the same RCS when dealing with the placement of page images on media, and with finishing operations that are to be applied to the media that comprise the output of a document or job. In DPA, use of the RCS is not limited to SPDL documents, but is applicable to operations with all document formats.

The RCS is a Cartesian coordinate system with units of millimetres on both axes. The location and orientation of the RCS on the medium is a property of the medium, and not of the page image to be placed on the medium. For rectangular media that have a normal, distinguished viewing position, the convention is that with the medium oriented in its natural viewing position:

a)	the origin is at the bottom left corner of the medium;

b)	the x-axis is placed along the bottom edge, with positive values of x to the right;

c)	the y-axis is placed along the left edge of the medium, with positive values in the upward direction.

[The x-axis and the y-axis are referred to as reference axes in subsequent discussions.]

�embed Draw \s * mergeformat ���

Figure 6-5 - Reference Coordinate System

For rectangular media that have no distinguished natural viewing position, the convention is that the reference viewing position is with the long edge vertical (commonly called portrait orientation). This convention is adhered to even if the page images are being placed on the medium in such a way that the completed document will commonly be viewed in another orientation (e.g., with the long edge horizontal, in what is commonly referred to as landscape orientation).

A sheet of plain, unmarked paper is an example of a medium with no distinguished natural viewing position, that is, until image data is placed on a sheet of plain paper, or some other operation is performed on the medium to give it a distinguishing feature, the medium has no natural viewing position. Thus, plain paper is normally treated as portrait media, in accordance with the convention stated above.

Preprinted forms are examples of media that do exhibit a distinguished natural viewing position. A preprinted form can therefore be treated as either a portrait or a landscape medium, depending upon whether the long edge of the form is vertical or horizontal when the form is held in its natural viewing position.

6.6	Security in DPA�tc "6.6	Security in DPA"\l 2�

Two specific security mechanisms are addressed here: Authentication and Access authorization.

6.6.1	Authentication�tc "6.6.1	Authentication"\l 3�

At BIND time, the security subject represented by the DP-User is authenticated either by using password(s) or, in the case of a user who has been previously authenticated elsewhere, by checking a certified identity. The authentication mechanism verifies the credentials of the DP-User requesting access to the DP-Server. This does not, however, qualify the DP-User to access all DPA-Objects stored in the DP-Server, or to access the abstract-services implemented by the DP-Server.

Certified identities can also be presented subsequent to the BIND operation, as arguments to individual operations. This permits the BIND to be shared between multiple security subjects, the DP-User representing a different security subject for each of the operations concerned.

NOTE - The object designator DP-Administrator will be used throughout ISO/IEC 10175 primarily to identify those specific cases where it is necessary to distinguish between users with normal access privileges and those with some form of administrative privilege. Unless otherwise qualified, this and following discussions concerning DP-Users apply equally to DP-Administrators.

6.6.2	Access authorization�tc "6.6.2	Access authorization"\l 3�

Access authorization is controlled by a group of security-related attributes assigned to DPA-Objects, known collectively as a Control Attribute Package (CAP).

In order to provide the design freedom necessary to enable DP-Servers to operate under a wide variety of security policies, the DPA implementor should be free to choose control attribute-types appropriate to the security regimes for which the implementation is targeted. In the longer term, standards will be defined for access authorization rules and for control attribute-types, from which users of DPA will make their choices. Examples of such attributes might be the identity, the access rights, and the role of the initiator of a print-job.

In the short term these standards are not available, and ISO/IEC 10175 defines one specific control attribute, the DpAccessList.

DpAccessListElement	::= SEQUENCE {�			access-id				AccessId,�			access-rights			DpAccessRights }

AccessId					::= DistinguishedNameString	

DpAccessRights			::= ENUMERATED {�			dp-user					(0),�			dp-administrator	(1) }

If the accessing DP-User has presented a Privilege Attribute Certificate (PAC) containing privilege attributes for a DPA-Object (e.g., a print-job), these attributes will be used where appropriate, in conjunction with the attributes in the CAP, in order to determine what form of access the user may have to that object. Privilege attributes are optionally presented either at abstract-bind time via a PAC type credentials argument (see 7.1.1) or explicitly at the time of the operation request in the privileges argument (see 8.1.2.3) or both. The DP-User may also specify a proxy PAC in a specific operation request. This proxy PAC is used by the DP-Server on behalf of the requesting DP-User (see 8.1.2.3).

PrivilegeAttributeCertificate ::= EXTERNAL

Each specific DPA realization may determine which CAP attributes it is intended to support according to some defined matching algorithms.

7	Abstract-association information�tc "7.	Abstract-association information"\l�

This clause specifies the information that must be defined or supplied to effect the BIND operation.

7.1	Abstract-bind-operation�tc "7.1	Abstract-bind-operation"\l 2�

An abstract-bind-operation opens the DP-Server ports. The initiator is the DP-User or DP-Administrator, while the responder is the DP-Server.

	DpBind	::= ABSTRACT-BIND�		TO { dp-user[S], dp-administration[S] }�		BIND�			ARGUMENT			DpBindArgument �			RESULT			DpBindResult�			BIND-ERROR		DpBindError

The abstract-bind parameters needed by the DP-Server Port are defined and described in the present subclause.

7.1.1	Bind-argument Parameters�tc "7.1.1	Bind-argument Parameters"\l 3�

The dp-bind-argument parameter identifies or authenticates the DP-User or DP-Administrator. It also accepts a set of restrictions for entries to be returned as the result of an abstract-operation.

The definition is:

DpBindArgument ::=		SEQUENCE {�		credentials					[0] Credentials,�		retrieve-restrictions	[1] Restrictions OPTIONAL, --default is none--�		bind-security				[2] BindSecurity OPTIONAL }

The components are defined as follows:

credentials may be exchanged between the DP-User and the DP-Server. Whether the DP-User is representing a specific end user or not is of no concern to the DP-Server. The DP-Server's view of the accessing subject's identity and access privileges is obtained from the credentials passed (though this view may be modified for a particular operation). Credentials serve to identify a user, authenticate a user, or certify the identity of a user previously authenticated externally. In the latter case, access control privileges associated with the user can also be passed. The full syntax and semantics of credentials when used for authentication purposes are outside the scope of ISO/IEC 10175 (since these matters are common to all bind operations). Use of certified security attributes is described in outline below. Semantic details are however not defined since this is dependent on the actual security policy formulated and implemented by the organisation operating the DP-Server.

The authentication of the user may have taken place external to the DP-Server; the resulting access control attributes will then be passed in the abstract-bind process to allow the DP-Server to make subsequent access control decisions. This is the function of the PAC construct. Either the DP-User or the DP-Server may abort the abstract-bind process if the authentication parameters do not justify successful completion of the abstract-bind operation.

Credentials ::= CHOICE {�		simple				[0] Creds, -- used for initial authentication --�		certified			[1] PrivilegeAttributeCertificate }�		 -- used when initial authentication has already taken place external to �		 -- the DP-Server --

A Creds contains a password associated with the DP-User.

Creds ::= SEQUENCE {�		name				[0] DistinguishedNameString,�		password			[1] OCTET STRING }

A PrivilegeAttributeCertificate contains attributes associated with the DP-User, for example the user's name or security clearance. These can be used in making access control decisions (see subclause 6.6.2).

retrieve-restrictions contains the restrictions on objects to be returned as a result of an abstract-operation. The restrictions remain in effect until an abstract-unbind-operation is issued.

In the absence of this argument, the default is that no restrictions need to be performed.

This argument consists of the following components:

Restrictions ::= SET {�	maximum-result-length [1] ResultLength OPTIONAL }�											-- default is no restriction

ResultLength 	::=		INTEGER (1..ub-integer)

maximum-result-length: The maximum-result-length that the DP-User is prepared to accept as result of a list-object-attributes abstract-operation. Any result with a result-length exceeding the one specified will not be returned, but will result in a resource-limit-exceeded ServiceError unless the abstract-operation has explicitly overridden the restriction.

In the absence of this component, the default is that no read-restrictions on result-length need to be performed.

bind-security specifies OSI security services required in the bind, such as, for example, peer entity authentication of the software entities involved, or confidentiality, or integrity protection.

BindSecurity ::= EXTERNAL

7.1.2	Bind-result parameters�tc "7.1.2	Bind-result parameters"\l 3�

The dp-bind-result parameter returns any authentication-attributes needed.

The definition is:

DpBindResult ::= SET {�		authentication-attributes	[0] SET OF AuthenticationAttribute }

AuthenticationAttribute	::=	EXTERNAL

authentication-attributes carries information returned as confirmation of an authentication check, which is not constrained by ISO/IEC 10175.

7.1.3	Bind-error parameters�tc "7.1.3	Bind-error parameters"\l 3�

The DP-Server may report:

-	a SecurityError which indicates that the identity of the DP-User cannot be established on the basis of the information the DP-User supplied,

-	a ServiceError which indicates an error related to the provision of the service.

DpBindError ::= CHOICE {�		service-error		[0] ServiceProblem, -- see subclause 8.4.7 --�		security-error		[1] SecurityProblem -- see subclause 8.4.5 -- }

The same errors may occur in DP abstract-operations, and are described in subclause 8.4.

7.2	Abstract-unbind operation�tc "7.2	Abstract-unbind operation"\l 2�

An abstract-unbind operation closes the user and/or administration port(s). There are no arguments or errors associated with the abstract-unbind operation.

DpUnbind ::= ABSTRACT-UNBIND�		FROM { dp-user[S], dp-administration[S] }

�8	Abstract-operations�tc "8	Abstract-operations"\l�

This clause defines the following abstract-operations:

a)	Print

b)	ModifyJob

c)	CancelJob

d)	ListObjectAttributes

e)	PromoteJob

f)	InterruptJob

g)	PauseJob

h)	ResumeJob

Certain print-servers may choose to permit some of these operations to be invoked only by users possessing the appropriate access privilege level, e.g., system administrators.

8.1	Common datatypes and values used in DPA abstract-operations�tc "8.1	Common datatypes and values used in DPA abstract-operations"\l 2�

8.1.1	Imported datatypes �tc "8.1.1	Imported datatypes "\l 3�

Some datatypes described in clause 6, as well as in this clause, are actually defined in other Standards. These imported datatypes are:

From the OSI Directory (ISO/IEC 9594-2):

DistinguishedName,�RelativeDistinguishedName.

From Management Information Model (ISO/IEC 10165-4)

AttributeId

From DOAM (ISO/IEC 10031-2):

DOR

From MOTIS (ISO/IEC 10021-4):

ORAddressAndOrDirectoryName

8.1.2	Datatypes common for most DPA abstract-operations

The CommonArguments data type is a set of attributes that the client may include on all abstract-operations. The server shall apply these attributes to the performance of the abstract-operation. The intent of CommonArguments is to allow clients to provide standard attributes and implementation-specific extension attributes to servers that control or modify the performance of abstract-operations. CommonArguments shall not be used for attributes of objects.

CommonArguments ::= SET OF Attribute

If the client specifies an attribute in CommonArguments that the server supports, the server shall perform the actions described in that attribute’s definition. If the client specifies an attribute that the server does not support or cannot identify, the server shall ignore that attribute.

8.1.2.1	Priority

The client may specify the Priority parameter for any DPA abstract-operation. It is useful in the context of a heavily loaded server to allow better access to some privileged requests, according to a locally applied priority policy.

Priority ::= INTEGER (1..100)

prioritySyntax ATTRIBUTE-SYNTAX� Priority� MATCHES FOR EQUALITY ORDERING� ::= id-syn-priority� XE "id-syn-priority" �

priority ATTRIBUTE� WITH ATTRIBUTE-SYNTAX prioritySyntax� SINGLE VALUE� ::= id-att-priority� XE "id-att-priority" �

The concept of operational priority is not necessarily related to any communication priority. Client and server may, but need not, allow specification of this parameter to influence the quality of service of the underlying communication layers.

The server may grant the abstract-operation with the priority requested, but need not. The assignment of and association of any particular priority interpretation with any numeric value is site specific. The values defined in this subclause are intended to be advisory. This priority concept should not be confused with job-priority (clause 9.2.4.6), though they use the same data type.

8.1.2.2	Privileges

This attribute defines access certificates to be associated directly with an abstract-operation request replacing or supplementing those available from the abstract-bind within which the request is being made.

Privileges ::= SEQUENCE {� operation-pac [0] PrivilegeAttributeCertificate OPTIONAL,� -- see clause 6.6.2� proxy-pac [1] PrivilegeAttributeCertificate OPTIONAL }

privilegesSyntax ATTRIBUTE-SYNTAX� Privileges� MATCHES FOR EQUALITY ORDERING� ::= id-syn-privileges� XE "id-syn-privileges" �

privileges ATTRIBUTE� WITH ATTRIBUTE-SYNTAX privilegesSyntax� SINGLE VALUE� ::= id-att-privileges� XE "id-att-privileges" �

The server may require an operation-pac for either of two reasons:

a)	When the access privileges established by the user during the bind are not sufficient to permit the requested operation,

b)	when the bind is being multiplexed between a number of users, and each abstract-operation is potentially under the control of a different user, who must present his own access privileges.

The proxy-pac may be required because the DP-Server shall make further access to another application on behalf of the DP-User, and itself would have insufficient access rights unless supplemented by those in the proxy-pac. The DP-Server that receives the proxy-pac itself then uses this as an operation-pac to the other application.

For additional information, refer to subclause 6.6 and to ISO/IEC 10166-1 (Document Filing and Retrieval, part 1) subclause 8.1.3.5.

8.1.2.3	Operation-locale

The operation-locale operation attribute shall identify the locale that the server shall use when processing human readable text as part of an abstract-operation.

Locale ::= SEQUENCE {� language [0] OCTET STRING (SIZE (2)),� country [1] OCTET STRING (SIZE (2)),� character-set [2] OBJECT IDENTIFIER,� modifier [3] OCTET STRING (SIZE (64)) OPTIONAL }

localeSyntax ATTRIBUTE-SYNTAX� Locale� MATCHES FOR EQUALITY� ::= id-syn-locale� XE "id-syn-locale" �

operation-locale ATTRIBUTE� WITH ATTRIBUTE-SYNTAX localeSyntax� SINGLE VALUE� ::= id-att-operation-locale�xe "id-att-operation-locale"�

This locale specification shall control, at least, server-generated messages returned in the abstract-error data types, and server-returned character-coded attributes.

The operation-locale attribute shall not affect object names.

The locale specified by this attribute shall affect all localization-dependent characteristics, such as language, territory, date, time, money, etc. associated with this operation.

The language element contains the 2 character language abbreviation as defined in ISO 639:1988 - Codes For the Representation of Names of Languages.

The country element contains the 2 character country or territory abbreviation as defined in ISO 3166:1993 - Codes for the Representation of Names of Countries.

The character-set element is an object identifier specifying the coded character set. See the default-character-set document attribute for the list of standard values.

Since a server shall support at least the coded character set of ISO/IEC 646 IRV (ASCII), that the server shall accept and treat as equivalent the common code points 32-126 (decimal), inclusive, in the data types: VisibleString, T61String, Latin1String, and UCS2Level2String that the client might send. See 9.1.5.

If the server supports the ISO 8859-1 coded character set (ISO Latin-1), the server shall accept and treat as equivalent the common code points 32-126 (decimal) AND 160-255 (decimal), inclusive, in the data types ISOLatin1String and UCS2Level2String that the client might send. See 9.1.5.

If the client specifies the operation-locale attribute, the server shall convert any character-coded attributes to the coded character set specified by the client in the operation-locale, when returning character-coded attributes to the client, if the server supports the specified coded character set. See 9.1.5. If the value specified for this attribute is not supported by the server, or the client does not supply this attribute, the server shall use the locale specified in the server’s locale attribute.

If the client omits the operation-locale attribute, then the client shall be able to accept any of the 4 standard character sets and the client shall accept and treat as equivalent the common code points 32-126, inclusive, in the data types received from the server: VisibleString, T61String, Latin1String, and UCS2Level2String.

In addition, if the client omits the operation-locale attribute and the client supports the ISO 8859-1 coded character set (ISO Latin-1), then the client shall accept and treat as equivalent the common code points 32-126 (decimal) AND 160-255 (decimal), inclusive in the data types ISOLatin1String and UCS2Level2String that the server might return.

The modifier element is reserved for future use and is not used in this version of the protocol.

This attribute shall not directly affect any object, attribute, or attribute value that the client specified as part of the operation argument; other specific mechanisms for determining locale are provided for those areas. The server shall use the value of this attribute as a default locale for these other locale mechanisms, for example, the locale element of EventHandlingProfile.

8.1.2.4	Default-delivery-addresses

This attribute provides default delivery addresses for various delivery-methods that might be required for the operation for notification and logging.

DeliveryAddressForMethod::= SEQUENCE {� delivery-method [0] OBJECT IDENTIFIER,� delivery-address [1] DeliveryAddress }

deliveryAddressForMethodSyntax ATTRIBUTE-SYNTAX� DeliveryAddressForMethod� MATCHES FOR EQUALITY� ::= id-syn-delivery-address-for-method�xe "id-syn-delivery-address-for-method"�

default-delivery-addresses ATTRIBUTE� WITH ATTRIBUTE-SYNTAX deliveryAddressForMethodSyntax� MULTI VALUE� ::= id-att-default-delivery-addresses�xe "id-att-default-delivery-addresses"�

By itself, this attribute does not indicate whether notification and/or logging is to be performed.

The client may submit a default delivery-address for each of several delivery-methods to be used by the server after the server has performed the usual defaulting for the job’s notification-profile and logging-profile attributes, as follows:

a)	As with any defaulting, if the client does not explicitly supply a notification-profile or logging-profile job attribute, the server supplies the values of the notification-profile and logging-profile attribute from:

1) the initial-value-job object, specified by the client in the job’s initial-value-job attribute, if any;

2) else from the printer-initial-value-job object specified by the printer’s printer-initial-value-job attribute.

b)	If the server determines that any of the values of the job’s notification-profile and/or logging-profile attribute do not contain delivery-addresses, the server shall fill in the delivery address supplied by this attribute for the corresponding delivery-methods, if any.

c)	If there are still values of the job’s notification-profile and/or logging-profile attribute that do not have delivery-addresses, the server shall ignore those values and the server shall perform no notification or logging for those (partially specified) values.

8.1.2.5	Requested-attributes

This attribute enables a client to specify a list of attibutes that are to be returned from a DPA abstract-operation; the specified attributes will be included with the status attributes that are normally returned in the abstract-operation result. This is useful in those cases where a user needs information that is not normally returned by a particular server or abstract-operation.

Attributes that are specified in requested-attributes, but which are not supported by the server, or for which a value is not available, will be returned with an empty value.

If this attribute is not specified in the abstract-operation argument, the server will return the status attributes that are normally returned in the abstract-operation result. If this attribute is specified in the list-object-attributes-argument, it will be ignored. [PTC 3.3]

requested-attributes ATTRIBUTE� WITH ATTRIBUTE-SYNTAX AttributeId� MATCHES FOR EQUALITY� MULTI VALUE� ::= id-att-requested-attributes�xe "id-att-requested-attributes"�

8.1.3	Upper and lower bounds�tc "8.1.3	Upper and lower bounds"\l 3�

This International Standard defines maximum and minimum values for certain integer types and for the lengths of certain string types. These upper bound values are employed in datatype definitions presented elsewhere in this International Standard.

ub-text-string�INTEGER ::= 4095��ub-descriptor-string�INTEGER ::= 4095��ub-message-string�INTEGER ::= 4095��ub-name-string�INTEGER ::= 255��ub-octet-string�INTEGER ::= 4095255 [ptc 3.17]��ub-integer�INTEGER ::= 2147483647 -- 231-1 --��ub-integer64�INTEGER ::= 9223372036854775807 -- 263-1��lb-integer�INTEGER ::= -2147483648 -- -231��lb-integer64�INTEGER ::= -9223372036854775808 -- -263��8.2	DP-User Port Abstract-Operation Definitions�tc "8.2	DP-User Port Abstract-Operation Definitions"\l 2�

The following ASN.1 productions make use of datatypes described in sub-clauses of clause 6.4. Clause 11 describes the steps a print-server shall perform for each operation.

8.2.1	Print�tc "8.2.1	Print"\l 3�

The Print abstract-operation allows a user to submit a print-request to the print-server. A print-request contains the information needed by the print-server to print a particular document. A client may print multiple documents in a single print-job by making multiple print invocations.

This abstract-operation is formally defined as follows:

Print ::= ABSTRACT-OPERATION�		ARGUMENT		PrintArgument�		RESULT			PrintResult�		ERRORS			{	AttributeError,			-- see clause 8.4 --�								DocumentAccessError,�								PrinterError,�								SecurityError,�								SelectionError,�								ServiceError }

When the print-server accepts the initial create-job print request of a job, it establishes a print-job and responds with a print-job identifier unique within the server. Otherwise the server shall reject the print-request and report the reason.

This International Standard assumes that printers and other server components are reset or returned to appropriate states prior to processing each job. However, between documents of the same job, resetting of the printer or interpreter depends upon the type of document format and/or the value of the reset-printer attribute. For page-independent document formats, the printer and interpreter should reset their states automatically at the end of printing each document. For other document formats, the reset-printer attribute permits the client to suspend the reset of the printer after particular documents, if desired for down-line loading of fonts, forms, PDL prologues, etc.	�[PTC-4.2]

The parameters of a job and its associated documents completely (and independently) define the processing and printing of the job. The existence of other jobs and their parameters is expected to affect only job scheduling.

For a single document print-job or the first document of a multiple document print-job, the first invocation of the Print abstract-operation shall be a create-job operation and shall allow a client to pass all job attributes and the first document's attributes. The client shall omit the job-identifier attribute from the job attributes provided on the first request. The server processing the Print abstract-operation shall return the job-identifier attribute as a result of the first request.

For a multiple document print-job, each additional document requires an additional invocation of the Print abstract-operation. The client shall specify an add-document operation in the PrintArgument for each additional document. The client shall provide the value of the job-identifier attribute (returned by the server on the first invocation) and the attributes for each additional document. Document attributes are not inherited from previously submitted documents.

Resources such as fonts and electronic overlays may be transferred to a print-server in the form of non-printable, or resource, documents (for those servers that support this capability). These documents are created the same as printable documents; i.e., each resource document must be created by means of a Print abstract-operation, and each is assigned a document-number in accordance with its position in the job-document stream. Document attributes in the corresponding Print argument that are not applicable to resource documents shall cause the server to fail the entire Print abstract-operation and report an inconsistent-with-other-attributes AttributeError, unless they are listed in the non-compulsory-attributes attribute in which case the server shall ignore them.

The server may schedule print-jobs for printing before all documents of the job have been received (see 9.2.4.11, job-scheduling). It is implementation-dependent whether scheduling will actually occur before receipt of all documents; however, note that in order to properly schedule a job for printing, a server may need to collect all documents of a job in order to determine the job's resource and functional requirements.

A conforming server that supports multiple document print-jobs either 1) shall always accept all Print abstract-operations invoked to create that job before the start of printing or 2) shall support the after-complete value of the job-scheduling attribute (see 9.2.4.11). If the server does not have sufficient resources in such cases (e.g. storage for all the documents,) the server shall report a resource-limit-exceeded ServiceError.

Error handling with respect to print-jobs depends upon where errors occur in the job processing cycle and upon the settings of certain attributes and parameters.

Errors found during the submission of the sequence of Print abstract-operations that compose a job are handled by the client and are not affected by the settings of job attributes. The client may choose to implement any error handling policy it wishes (e.g. all or nothing, until first error, do maximum) by the way it chooses to either abort (using the CancelJob abstract-operation) or continue submitting requests after an error is encountered.

The job attributes job-abort-criteria and document-abort-criteria apply to the errors, warning conditions, etc. that occur after the submission of the job and/or document; that is, they apply to those events that are not detected until after the server returns to the client.

When errors occur during the processing of print-jobs, the following conditions apply:

a)	If an error occurs in the first (or only) Print abstract-operation submitted for the job, before the server returns to the client, the server shall not establish a job and shall not assign a job-identifier (i.e., the Print abstract-operation must return an Error, not a PrintResult).

b)	If an error occurs after the job is established but before the final Print abstract-operation in the set has been accepted, e.g., in the Print abstract-operation that submits document number N, the server shall reject the request for document number N and shall behave as if that Print abstract-operation had not occurred. Hence, 0 copies of document N are printed (since the operation was rejected and the job shall contain N-1 documents at that point). The server shall reuse the number N for the next successful add-document Print abstract-operation for the job, if any.

A conforming server shall treat each subsequent add-document Print abstract-operation of a multiple document print-job as an atomic operation. The success or failure of these add-document operations do not affect the overall status of the job. The client shall cancel the job or continue submitting requests according to its own error handling policy.

A conforming server shall implement a time-out mechanism to handle cases where a print-job has been created, but a job-submission-complete value of TRUE or a close-job Print abstract-operation has not been received. Upon reaching an implementation defined time-out period, the server shall print the incomplete job as if a close-job Print abstract-operation had just been received.

A conforming server shall reject the Print abstract-operation and report a no-modifications-allowed UpdateError if either an add-document or close-job Print abstract-operation is received on a job that is complete (i.e. has previously received a job-submission-complete element with a value of TRUE or a close-job Print abstract-operation).

8.2.1.1	Print-argument

The argument of this abstract-operation is formally defined in the following productions. If any attribute occurs more than once in the job-attributes, first-document, or new-document elements of the PrintArgument, a conforming server shall use the later occurrence and report a duplicate-attribute-ignored warning. Duplicate values supplied in the value of a multi-valued attribute shall not generate an error or warning.

PrintArgument ::= CHOICE {�			create-job		[0] SEQUENCE {�					printer-name					[0] SimpleName,�					job-submission-complete	[1] BOOLEAN DEFAULT TRUE,�					job-attributes				[2] SET OF Attribute OPTIONAL,� -- may include any job attribute, except� -- id-att-job-identifier, � -- id-att-printer-name-requested, and� -- any job-status attribute�					first-document				[3] DocumentDescription OPTIONAL,�					common-arguments			[4] CommonArguments OPTIONAL },�			add-document	[1] SEQUENCE {�					existing-job					[0] JobIdentifier,�					job-submission-complete	[1] BOOLEAN DEFAULT TRUE,�					new-document					[3] DocumentDescription,�					common-arguments			[4] CommonArguments OPTIONAL },�			close-job		[2] SEQUENCE {�					existing-job					[0] JobIdentifier,�					common-arguments			[4] CommonArguments OPTIONAL } }�

DocumentDescription ::= SEQUENCE {�			transfer-method			[0] OBJECT IDENTIFIER�												 DEFAULT id-val-transfer-method-with-request,�			document-content		[1] DocumentContent OPTIONAL,�			document-type				[2] OBJECT IDENTIFIER�												 DEFAULT id-val-document-type-printable,�			document-attributes	[3] SET OF Attribute OPTIONAL�				-- Contains any document attributes valid for the document,�				-- except any document-status attributes.�				-- document-type = printable, font, or resource.�				-- If document-type is font, a font-identifier attribute is required�				-- in the document-attributes element.�				-- If document type is resource, a resource-name attribute�				-- is required in the document-attributes element.� }

�The client shall supply a non-empty printer-name element in the PrintArgument to identify the destination of the print-job. This element specifies the value for the printer-name-requested job attribute. The server shall replace any client supplied value (if any) for the printer-name-requested attribute with the value of the printer-name element. The server may, but need not, issue a warning that it has replaced this attribute value.

NOTE - Some print-server implementations and/or system administration policies may not allow the printer-name element to contain the name of a physical printer. See 9.2.5.2 for the definition of an attribute that allows clients of such servers to specifically request a physical printer.

If the client does not supply the transfer-method element the default transfer-method is with-request and the client shall place the document data in the document-content element.

8.2.1.2	Print-result

The result of this abstract-operation is formally defined as follows:

PrintResult ::= SEQUENCE {�			job-identification		[0] JobIdentifier,�												-- value of id-att-job-identifier [see 9.2.1.1]�			server-state				[1] OBJECT IDENTIFIER OPTIONAL,�												-- value of id-att-server-state�			server-message			[2] Message OPTIONAL,�												-- value of server's id-att-message�			document-status			[3] SET OF Attribute OPTIONAL,�												-- may include id-att-document-state,�												-- id-att-document-sequence-number,�												-- id-att-file-reference, and�												-- id-att-copies-completed.�												-- See document-status attributes subclause.�			job-status					[4] SET OF Attribute�												-- may include any job-status attributes�												-- See job-status attributes subclause.� }

In the case of multiple-document jobs, the returned job status information applies to the job as a whole, not to any individual part of the job.

8.2.1.3	Print Abstract-errors

Should the request fail, the server shall report one of the listed abstract-errors. The circumstances under which the server will report a particular abstract-error are defined in clause 8.4.

8.2.2	Modify-job�tc "8.2.2	Modify-job"\l 3�

The ModifyJob abstract-operation is used to alter the values of specified job and document attributes after the print-job has been established by the print-server, i.e. after the initial Print abstract-operation. This operation may impact the scheduling of the job.

The effect of modifying a job shall be the same as if the job were originally submitted with the modified attributes whether the client had supplied values for those attributes in the original print-request or the server had supplied default values. However, for those attributes that a server supplied default values depending on the values of other attributes, the server shall not re-apply such defaults, since the server shall not distinguish between (1) values supplied originally by the client in the print-request and (2) values supplied by the server as default values as part of the print-request. In other words, once a job has been accepted by a server, the server shall not distinguish between attribute values that were supplied by the client and attribute values that were defaulted by the server.

This abstract-operation is formally defined as follows:

ModifyJob	::= ABSTRACT-OPERATION�			ARGUMENT			ModifyJobArgument�			RESULT			ModifyJobResult�			ERRORS			{	AccessError,		-- see clause 8.4 --�									AttributeError,�									DocumentAccessError,�									PrinterError,�									SecurityError,�									SelectionError,�									ServiceError,�									UpdateError }�

The ability of a server to successfully modify a job attribute, and the resulting effect, depends upon the attribute involved and upon the presence of the attribute-type object identifier in the job-non-compulsory-attributes attribute or the document's non-compulsory-attributes attribute. If the server cannot perform the specified modification for any compulsory attribute (e.g., due to conflicting requirements, unavailability of a feature, or current status of the job or system), the server shall reject the ModifyJob abstract-operation.

In general, the server shall ignore or reject modifications to particular attributes in a manner consistent with the treatment they would have received had they been submitted in the Print abstract-operation argument(s). However, if it is necessary to reject a specified modification to any attribute (e.g., a compulsory attribute with an unsupported value is specified), then the server shall reject the entire ModifyJob abstract-operation and continue to process the print-job as accepted originally.

In particular, if an attempt is made to remove an attribute from the value of the job-non-compulsory-attributes or non-compulsory-attributes, the server shall reject the ModifyJob abstract-operation if such a value would have caused the original print abstract-operation to be rejected. In this case, the server shall report an invalid-non-compulsory-attribute-modification AttributeError.

Not all parameters associated with a print-job may be modified. In particular access-and-accounting, job-security, job-status, and document-status attributes cannot be modified. See the beginning of each subclause in clause 9 for additional attributes that the server shall not permit to be modified. The server shall reject any ModifyJob abstract-operation that attempts to modify (1) the attributes that this International Standard specifies as non-modifiable or (2) for which the server does not support modification and shall report an illegal-modification AttributeError.

If the server rejects a modification because it does not support modification of an attribute or attributes, the server shall identify all such attributes in the AttributeError reported.

When the client modifies the job-hold attribute to a TRUE value:

a)	if the state of the job is preprocessing, it shall remain in that state.

b)	if the state of the job is pending, the server shall change the job to the held state (see 9.2.8.1) and add the job-hold-set value to the job's job-state-reasons attribute.

c)	otherwise, the server shall reject the ModifyJob abstract-operation and return an inappropriate-object-state AccessError.

8.2.2.1	Modify-job-argument

The argument of this abstract-operation is formally defined as follows:

ModifyJobArgument ::= SEQUENCE {�		job-identification			[0] JobIdentifier,�		document-number					[1] PositiveInteger OPTIONAL,�												-- required for addressing individual�												-- documents in a multiple document print-job�		job-attr-modification		[2] SEQUENCE OF JobAttrModification,�		modify-message					[3] Message OPTIONAL,�										-- sets value of id-att-job-message-from-administrator�		common-arguments				[4] CommonArguments OPTIONAL }�

JobAttrModification ::= SEQUENCE {�		attribute-id			[0] AttributeId,� -- Any job attributes, except:

 -- id-att-job-identifier,

 -- id-att-job-owner, id-att-job-originator,

 -- id-att-printer-name-requested,

 -- id-att-initial-value-job,

 -- any access-and-accounting attributes,

 -- any job-security attributes, and

 -- any job-status attributes.

 -- Any document attributes, except:

 -- id-att-transfer-method, id-att-document-content,

 -- id-att-initial-value-document, and

 -- any document-status attributes

		attribute-values	[1] SET OF ANY -- DEFINED BY attribute-id -- OPTIONAL,�									 -- omitted for set-to-default�		modify-operator		[2] ModifyOperator DEFAULT replace }

ModifyOperator ::= ENUMERATED {�		replace					(0),�		add-values				(1),�		remove-values		(2),�		set-to-default		(3) }

If the client omits the optional document-number element, the client may specify both job and document attributes in the job-attr-modification element; the server shall apply any specified document attribute modifications to all documents in the print-job. If an error occurs, the server shall reject the abstract-operation and make no modifications.

If a client does supply a document-number, the server shall apply the specified document attribute modifications to that document only; if the client includes job attributes in job-attr-modification, the server shall return a per-job-attribute-inadmissible AttributeError.

Support for the ability to modify attributes for individual documents of a multiple document print-job is implementation-dependent. Servers not implementing this support shall return a modify-document-unsupported ServiceError if document-number is supplied, rather than modifying all the documents in the entire job.

The JobAttrModification type is structured to include the target attribute type and value specification; in addition, a modify-operator value is included to stipulate the exact effect that the supplied modification is to have on the existing attribute value.

If the client omits the values component of JobAttrModification and specifies a modify-operator value of replace, remove-values, or add-values, a server shall leave the value of the attribute unchanged.

No values need be supplied when the modify-operator is set-to-default; a server shall ignore any values supplied.

If the client lists a required attribute (i.e. an attribute element of the PrintArgument) in either the job-non-compulsory-attributes or non-compulsory-attributes attribute, the server shall completely ignore this particular value of the attribute. [PTC-4.3]

If the client supplies a modify-message element as part of the request, the server shall set the value of the job's job-message-from-administrator attribute to the value of the modify-message element.

The ModifyOperator type defines the following values:

a)	replace - the server replaces the existing values of the specified attribute with the supplied modification values;

b)	add-values - the server adds the supplied modification values to the existing values of the specified attribute. If the request applies an add-values JobAttrModification to a single-valued attribute, the server shall report a not-multi-valued AttributeError. If a request supplies a JobAttrModification value for a multi-valued attribute that duplicates one (or more) existing values, the server shall add the value and report no warning;

c)	remove-values - the server removes supplied modification values from the existing values of the specified attribute. If the request supplies a value that is not a member of the existing attribute values, the server shall ignore that value and report no warning or error; the server shall treat an attempt to remove the last (or only) value of an attribute as equivalent to set-to-default;

d)	set-to-default - the server replaces the existing values of the specified attribute with the default values obtained from either: (a) the initial-value-job (or initial-value-document) object specified in the job's initial-value-job (or initial-value-document) attribute, or (b) from implementation-defined default values.

8.2.2.2	Modify-job-result

The result of this abstract-operation is formally defined as follows:

ModifyJobResult ::= SEQUENCE {�		status				[0] SET OF Attribute OPTIONAL�								 -- any job-status or document-status attributes� }

8.2.2.3	Modify-job Abstract-errors

Should the request fail, the server shall report one of the listed abstract-errors. The circumstances under which the server shall report a particular abstract-error are defined in clause 8.4.

8.2.3	Cancel-job�tc "8.2.3	Cancel-job"\l 3�

This abstract-operation allows a user to cancel one specific print-job request or one document of a multi-document job, any time after the print-job has been established, i.e. after the initial Print abstract-operation. Depending on when the print-service receives the cancel request, some pages may be printed before a job is successfully terminated.

A client may cancel individual documents of multi-document print-jobs, however:

a)	the server shall not reuse the document sequence number, and

b)	the server shall maintain the value of the job attribute number-of-documents as the total of all documents that were submitted and accepted, rather than just those that remain after any CancelJob abstract-operations.

This abstract-operation is formally defined as follows:

CancelJob 	::=	ABSTRACT-OPERATION�		ARGUMENT	CancelJobArgument�		RESULT		CancelJobResult�		ERRORS	 	{	AccessError,�							AttributeError�							SecurityError,�							SelectionError,�							ServiceError, �							UpdateError }

Normally only the user who initiated a print-job by means of a print abstract-operation may cancel it. However, this is an implementation and site-specific decision, not mandated by this International Standard.

8.2.3.1	Cancel-job-argument

The argument of this abstract-operation is formally defined as follows:

CancelJobArgument ::= SEQUENCE {�		job-identification	[0] JobIdentifier,�		document-number			[1] PositiveInteger OPTIONAL,�										-- required for addressing individual�										-- documents in a multiple document print-job�		cancel-message			[2] Message OPTIONAL,�										-- sets value of id-att-job-message-from-administrator�		retention-period		[3] DeltaTime OPTIONAL,�		common-arguments		[4] CommonArguments OPTIONAL }

If the client attempts to cancel a job that is in the completed state (see 9.2.8.1), the server shall return the UpdateError cancellation-not-possible.

If the retention-period element is present, the server shall set the job's job-retention-period attribute (see 9.2.4.9) to the specified value; else the server shall not change the job's job-retention-period attribute. The server shall then perform the actions described in either 8.2.3.1.1 or 8.2.3.1.2, depending on whether the client specified the document-number parameter, or not, respectively.

8.2.3.1.1	Cancelling a specified document

If the client supplies a document-number, the server shall cancel the individual document specified by deleting the contained document object and its document data from the job immediately, independent of the value of the job's job-retention-period attribute.

If the client supplies a document-number, and the specified document is the only (or only remaining) document of the print-job, the server shall immediately delete the entire print-job as specified in 8.2.3.1.2, independent of the job's job-retention-period attribute, since the job no longer has any document data to be printed.

Support for the ability to accept requests to cancel individual documents of a print-job is implementation-dependent. When a document-number is supplied, servers that do not implement this support shall (1) reject the CancelJob abstract-operation (2) report a cancel-document-unsupported ServiceError, and (3) not affect the identified job.

8.2.3.1.2	Cancelling the entire print-job

If the client omits the optional document-number element, the server shall cancel the entire print-job as follows:

If the job's job-retention-period is not zero, the server shall place the job in the retained state (see 9.2.8.1) and set the job's job-state-reasons to cancelled-by-user or cancelled-by-operator, as appropriate (see 9.2.8.2).

If the job's job-retention-period (see 9.2.4.9) is 0 (or not implemented), the server shall delete the job, its contained document objects, and its document data; and place the job in the completed state (see 9.2.8.1). The server shall set the value of the job's current-job-state attribute to id-val-job-state-completed and shall set the job's job-state-reasons to cancelled-by-user or cancelled-by-operator as appropriate (see 9.2.8.2).

If the client supplies a cancel-message element as part of the request, the server shall set the value of the job's job-message-from-administrator attribute to the value of the cancel-message element.

8.2.3.2	Cancel-job-result

The result of this abstract-operation is formally defined as follows.

CancelJobResult ::= SEQUENCE {�		status					[0] SET OF Attribute OPTIONAL�									-- any job-status or document-status attributes�	}

8.2.3.3	Cancel-job Abstract-errors

Should the request fail, the server shall report one of the listed abstract-errors. The circumstances under which the server will report a particular abstract-error are defined in clause 8.4.

8.2.4	List-object-attributes�tc "8.2.4	List-object-attributes"\l 3�

This abstract-operation enables a user to obtain information from a print-server concerning jobs, printers, and other objects known to the server. By means of the specified selection criteria, this abstract-operation enables a client to request and obtain values for one or more attributes, associated with one or more DPA-Objects, belonging to some object class. The client is also able to obtain job objects in priority order.

This abstract-operation is formally defined as follows:

ListObjectAttributes	::= ABSTRACT-OPERATION�		ARGUMENT			ListObjectAttributesArgument�		RESULT				ListObjectAttributesResult�		ERRORS				{	AccessError,�									AttributeError,�									SecurityError,�									SelectionError,�									ServiceError }

8.2.4.1	List-object-attributes-argument

The argument of this abstract-operation is formally defined as follows:

ListObjectAttributesArgument ::= SEQUENCE {�		CHOICE {�			continuation		[0] SEQUENCE {�					context						[0] ContinuationContext,�					abort							[1] BOOLEAN DEFAULT FALSE,�					common-arguments		[2] CommonArguments OPTIONAL },�			specification		[1] SEQUENCE {�					class							[0] OBJECT IDENTIFIER, -- id-oc-xxx�					scope							[1] Cardinal DEFAULT 0,�											-- scope is contained objects in levels 0 through n�											-- where 0 means the base object specified�											-- by the object-identification�					selector					[2] Selector OPTIONAL,�					-- should not be omitted if class is id-oc-document�					requested-attributes	[3] SET OF AttributeId OPTIONAL,�					list-operator			[4] ListOperator DEFAULT get-attributes,�					common-arguments		[5] CommonArguments OPTIONAL } } }�

ContinuationContext ::= OCTET STRING�									-- implementation-specific information

Selector ::= SET {�		object-identification	[0] SEQUENCE OF ObjectIdentification OPTIONAL,�											-- should not be omitted if class is id-oc-document�		object-filter				[1] Filter OPTIONAL, -- see clause 6.4.5�		time-limit						[2] DeltaTime OPTIONAL,�		count-limit					[3] PositiveInteger OPTIONAL }

ObjectIdentification ::= CHOICE {�		job-identifier				[0] JobIdentifier,�		document-identifier		[1] DocumentIdentifier,�		object-identifier			[2] OBJECT IDENTIFIER,�		object-name					[3] DistinguishedNameString, �		font-reference				[4] FontReference,�		name-or-oid					[6] NameOrOid,�		simple-name					[7] SimpleName }

DocumentIdentifier ::= SEQUENCE {�		job-identifier				[0] JobIdentifier,�		document-number				[1] PositiveInteger OPTIONAL }�											 -- document sequence number

ListOperator ::= ENUMERATED {� get-attributes (0),� get-ordered-jobs (2) }

The ListObjectAttributesArgument is structured to enable a client to invoke a sequence of ListObjectAttributes abstract-operations in order to acquire a potentially large collection of data in the form of manageable subsets of the total. If the client supplies a continuation in ListObjectAttributesArgument for which the server has no further ObjectResults to return, the server shall return an empty results-set and shall omit the continuation element from the ListObjectAttributesResult. A conforming server may omit the continuation element from a ListObjectAttributeResult containing a non-empty results-set when it has no further ObjectResults to return.

For the first (or only) ListObjectAttributesArgument in a sequence, the client shall specify a specification of all the parameters for the desired query. Each ListObjectAttributesResult from the ListObjectAttributes abstract-operation indicates whether a limit has been reached and supplies a continuation context value.

The client may then supply the continuation context value in the continuation CHOICE of the next ListObjectAttributesArgument; this enables the server to resume the data collection from the point it had left off on the previous invocation. The client may supply a value for abort of TRUE to terminate the ListObjectAttributes operation in the server. Upon receiving an abort, the server shall return a ListObjectAttributesResult containing an empty results-set.

If a server receives an unrecognised continuation context, the server shall reject the request and report an invalid-continuation-context ServiceError.

Within the specification parameter, the client shall specify:

a)	class - the object class to which the base objects of interest belong;

b)	optionally, the scope of the query; that is, the number of the level of contained objects to be included in the query;

c)	optionally, a selector, to indicate which members of the class are of interest;

d)	optionally, the requested-attributes for which attributes are to be returned for each of the selected objects.

The scope element allows the client to identify the levels of contained objects to be included in the object query. Certain object classes contain other objects (e.g. job objects contain document objects). A client may specify a value of N for scope to indicate that the specified base object and all of its contained objects down to and including the Nth level are to be included in the query. For example, a scope value of 1 would indicate that the base object and its immediately contained objects are to be objects of the query.

In this part of ISO/IEC 10175, only the job object class contains objects (i.e., document objects, which are of class id-oc-document, but which may be of document-type printable, font, or resource), hence the maximum value ever needed for the scope element is 1, and this only when requesting the job object and its immediately contained objects.

If the scope element is 0 or omitted, the server shall consider the objects at level 0, i.e. the specified objects, but not any contained objects.

The selector provides a flexible means for the client to identify the target object, or objects, and place bounds on the search-time and volume of data to be returned. If the client omits the selector, or if the selector is present, but with no elements in the set, then the server shall select all objects of the class.

The object-identification element of the selector, if supplied, enables the client to provide an unambiguous identifier for the target object, or to supply a list of objects from which the server selects the target object(s) by means of additional selector parameters. The client shall specify a CHOICE alternative appropriate to the specified class. The object-identification encodes the value of the principal identification attribute of the specified class. If the class parameter is id-oc-document, the client shall specify an object-identification parameter containing a document-identifier. If the document-number element of the document-identifier is omitted, the server shall consider all documents of the specified job as the subject of the query.

If the client omits the object-identification, the server shall select from among all objects of the designated class and object classes derived from the designated class, if any (see 6.3.17 and 8.2.4.4). A conforming server may require and shall return that component of object-identification with the data type of the principle identification attribute of the specified object class.

If the client supplies the object-identification element, but the sequence is empty, the server shall select no target objects, hence the returned result-set is also an empty sequence.

The object-filter parameter permits the client to make an ambiguous object specification, thus allowing the ListObjectAttributes abstract-operation to return attribute values for zero, one, or more objects of the specified class.

A client may specify both an object-filter and an object-identification parameter. This enables a client to identify one or more potential candidate objects for the ListObjectAttributes abstract-operation, then reduce the set of candidates by means of the object-filter. (For example, the object-identification may identify several printers as candidates for selection, and the object-filter may then narrow the range of the selection to those printers that possess certain specified features).

The time-limit element specifies the maximum time duration the client has allocated to the print-server for completion of the requested ListObjectAttributes abstract-operation. If the server has not completed listing all object attributes that satisfy the criteria, the print-server shall return the information that has been collected, and shall provide a continuation context value to enable the client to resume the data collection with a subsequent ListObjectAttributes abstract-operation.

If a client specifies a time-limit such that the server cannot assemble at least one complete ObjectResult, the server shall return an empty result-set, and shall set the limit-encountered element to time-limit. The server may return an ObjectResult on a subsequent invocation, or not, depending upon implementation.

The count-limit value indicates the maximum number of ObjectResults for which the server shall return attributes on the abstract-operation invocation. If not all of the data have been returned that satisfy the specified criteria, the server shall return a continuation context to permit the client to resume data collection on a subsequent ListObjectAttributes abstract-operation invocation.

If the client omits either time-limit and/or count-limit, the server shall use an implementation-specific or site-specific default value. The server may implement server-specific values for maximum allowable time-limit and count-limit; if the client-supplied value exceeds the server maximum for either of these elements, the server maximum will take precedence.

The requested-attributes parameter includes the identifier of each of the attributes for which the server shall return values for the selected objects. If the client omits the requested-attributes element, the server shall return values for all valid attributes for all candidate objects, including any attributes defaulted by the server. However, if the client supplies the requested-attributes parameter with no attribute identifiers included in the set, the server shall not return any attribute values. If the server does not recognize or implement one or more of the requested-attributes for an object, the server shall ignore each such requested attribute and shall return only requested attributes for an object that are defined and implemented for that object.

NOTE - for a job in the completed state, only minimal job-status information may be available (see 9.2.8.1).

The value of the list-operator parameter specifies what form and class of information the server shall return for the requested-attributes:

a)	get-attributes: the server shall return a SEQUENCE OF Attribute for each of the selected objects; i.e., for each of the objects that meet the specified selection criteria, the server shall return its identification, followed by the type and value setting of each of the requested attributes that are available for the selected object.

b)	get-ordered-jobs: the server shall return a SEQUENCE of ObjectResult representing the jobs in the order that the server currently expects the jobs to start (or to have started) printing on the physical printer (1) specified by or (2) associated with the printer specified by the object-identification parameter. If the jobs may be printed on multiple physical printers, and if those printers specify different scheduling algorithms, then the algorithm used to order the jobs is implementation-dependent. The server shall return each job's object-identification and the type and value settings for each of the requested attributes that are defined and implemented for the job object class; document attributes are included if they have been identified in the requested-attributes element.

	The client shall (1) specify the class parameter to be id-oc-printer (or a class derived from id-oc-printer) and (2) the object-identification parameter to be a printer-name where printer-name may be either a logical printer or a physical printer.

	If the client specifies a logical printer, the server shall return all jobs that will or have printed on any of the physical printers associated with the specified logical printer, no matter what logical or physical printer-name was specified by clients as the value of the printer-name-requested parameter when the jobs were submitted.

	If the client specifies a physical printer, the server shall return all jobs that were submitted with a printer-name-requested parameter equal to (1) the specified physical printer or (2) any of the logical printers associated with the specified physical printer. When the client specifies a physical printer, the server may omit jobs that the scheduler would not assign to the specified physical printer because of attribute mismatch, though that might require excessive computation.

	The following example illustrates all combinations of a client specifying a logical and physical printer. Assume a server 1) whose scheduling algorithm is FIFO, 2) that assigns job numbers in ascending order as they are received, and 3) has received jobs 1 to 5:

�embed Word.Picture.6 ���

Job�printer-name-requested��1�LPA��2�LPB��3�LPC��4�PP1��5�PP2��	The server shall return the following jobs for different List Object Attributes object-identifications specified by the client:

LOA object-identification�returned jobs��LPA�1, 2, 3, 4, 5��LPB�1, 2, 3, 4, 5��LPC�1, 2, 3, 4, 5��PP1�1, 2, 3, 4��PP2�1, 2, 3, 5��	The client may specify LPA, LPB, or LPC in the ListObjectAttributes and get the same results, no matter to which of the 3 LPs that the client specified as the value of the job's printer-name-requested. When the client specifies PP1 or PP2, the server shall return only the subset of the jobs that are bound to the specified PP or could be, i.e., for which the job's printer-name-requested attribute is equal to the specified physical-printer or one of the logical printer's associated with the specified physical-printer.

	When the client specifies a physical printer, the server may, as an implementor option, omit returning jobs that cannot print on the specified physical printer. For example, if job 1 couldn't print on PP1, because job 1 required a medium that PP1 didn't support and job 2 required a medium that was supported by PP1, but was not ready on PP1, the server could return the following instead, depending on implementation:

LOA object-identification�returned jobs��LPA�1, 2, 3, 4, 5��LPB�1, 2, 3, 4, 5��LPC�1, 2, 3, 4, 5��PP1� 2, 3, 4��PP2�1, 2, 3, 5��	 or:

LOA object-identification�returned jobs��LPA�1, 2, 3, 4, 5��LPB�1, 2, 3, 4, 5��LPC�1, 2, 3, 4, 5��PP1� 3, 4��PP2�1, 2, 3, 5��	The server shall return jobs in all job states, including retained and completed, and shall return no job more than once. The order for returning jobs in the pending, processing, or terminating states shall depend on the scheduling algorithm implemented. The order of returning jobs in other states is implementation-dependent. However, the server shall return jobs in the retained and completed states after those in any other state.

NOTE - As with any ListObjectAttributes request, a client may request a server to include or filter out jobs with specified attribute values. For example, a client may request the server to not return jobs that are in the retained or completed states, by specifying a filter of the form:

	 NOT (current-job-state=id-oc-job-state-retained OR	�	 current-job-state=id-oc-job-state-completed)

	If the client specifies a scope parameter, the server shall interpret its value relative to the job class being returned (not the printer object being specified), so that a scope value of 1 would include the first level of contained documents in the job.

	All other input parameters have their normal effect.

	If the client omits the object-identification parameter, the server shall return jobs in order for each of the printers that the server supports. The server shall return all the jobs that (1) are competing for or (2) have competed for a printer, before stepping on to the next printer. When requesting all printers, a client should request an attribute that will help the client distinguish between jobs for different printers, such as printer-name-requested.

A conforming server shall implement a time-out mechanism to handle cases where a continuation context has been created (and continuation information possibly stored), but all remaining ObjectResults have not been retrieved. Upon reaching an implementation defined time-out period, the server shall dispose of any stored context information and treat the appropriate continuation-context specifications as invalid continuation contexts and return the appropriate error.

8.2.4.2	List-object-attributes-result

The result of this abstract-operation is formally defined as follows:

ListObjectAttributesResult ::=	SEQUENCE {�		answer-time			[1] GeneralizedTime,�		continuation			[2] ContinuationContext OPTIONAL,�		limit-encountered	[3] LimitEncountered OPTIONAL,�		result-set				[4] SEQUENCE OF ObjectResult }

LimitEncountered	::= ENUMERATED {�		time-limit				(0),�		count-limit			(1),�		error-limit			(2) }

ObjectResult ::= SEQUENCE {�			object-identification		[0] ObjectIdentification,�			attributes							[1] SET OF Attribute�			object-class						[2] OBJECT IDENTIFIER }, -- id-oc-xxx

The answer-time element specifies the time at which the server shall complete assembly of the information and return a response to this invocation.

Where the server has not returned all ObjectResults that satisfy the specification, due to a time-limit or count-limit, or encountering an error, the ListObjectAttributesResult shall include a limit-encountered component with the appropriate value. The server should always include a continuation context, even when an error occurs.

The server shall return the containing object first, followed by all contained objects. This order applies recursively to all levels of contained objects. The order in which the server shall return document (contained) objects is in the order in which they were created (which corresponds to the increasing document-sequence-number). The order in which the server shall return any other contained objects is implementation defined.

The object-class element in the ObjectResult specifies the object class (id-oc-xxx) of the object being returned, not the class specified as an input parameter. When the scope parameter is greater than 0, the value of the returned object-class shall be the object class of the returned object, which will be different from the class value specified as an input parameter when a contained object is returned.

The following table shows all possible legal combinations of parameters and the resulting candidate objects of the query:

object-class�scope�object-identification�candidates/returns��id-oc-job�0�job-identifier�just job object (no document objects)��id-oc-job�1�job-identifier�job object and all its contained documents, (id-oc-document, but document-type may be: printable, font, or resource).��id-oc-document�0�document-identifier: {job M, document N}�just document object N of job M (no job object) (id-oc-document, but document-type may be: printable, font, or resource).��id-oc-document�0�document-identifier: {job M, no document-number}�all document objects of job M, (no job object) (id-oc-document, but document-type may be: printable, font, or resource).��When the scope parameter is greater than 0, the server shall consider each contained object together with its parent object(s) as if they were a single "concatenated" object instance. A concatenated object starts with the specified base object instance and extends down to the leaf node at the level specified by the value of the scope parameter. However, the server shall return only one copy of each parent object instance.

For example, consider print-job 105 containing two printable documents. Given the following input:

input parameters�input parameter value��class�id-oc-job��scope�1��object-identification�105��object-filter�not specified��requested-attributes�job-name, document-description��the server shall return the following objects:

ObjectResult�output parameters�output parameter value��1:�object-identification�job-identifier=105���attributes�job-name="Monthly reports"���object-class�id-oc-job��2:�object-identification�document-identifier={105, 1}���attributes�document-description="January report"���object-class�id-oc-document��3:�object-identification�document-identifier={105, 2}���attributes�document-description="February report"���object-class�id-oc-document��so that the job object is returned only once, not once for each document object.

When the scope parameter is greater than 0, the server shall apply the filter, if any, to each concatenated object instance. Each FilterItem in the filter shall apply to the object within the concatenated object in which the FilterItem's attribute is defined and present. If an attribute is defined in more than one object of the concatenated object, then the FilterItem containing the attribute shall be interpreted as if it were applied to each object containing the attribute and the result ORed together in order to determine whether the filter has selected the concatenated object or not. If an attribute is not defined or is not present in any of the objects in the concatenated object, that FilterItem shall evaluate to FALSE for that concatenated object.

For example, consider a request to return the job-name job attribute value and the document-description document-attribute values for all the jobs belonging to user Smith:

input parameters�input parameter value��object-class�id-oc-job��scope�1��object-identification�omitted (so get all job objects)��object-filter�user-name=Smith��requested-attributes�job-name, document-description, document-type��Because the scope is 1, the server visits each document and applies the predicate to the "concatenated object" consisting of the document and its parent job. Because the filter contains a single attribute that is a job attribute, the filter is applied to each parent job in the "concatenated object". The filter succeeds for each document belonging to a job whose user-name is equal to Smith. The server shall return each job object (with the requested job-name attribute) only once, just before returning the first document contained in the job. The server shall return each document object (with the requested document-description and document-type attributes) in the job (since the filter in the example doesn't eliminate any of the candidate document objects) in order.

The returned objects for a three-document job containing two documents of document-type printable and one of document-type font would be:

ObjectResult�output parameters�output parameter value��1:�object-identification�job-identifier=273���attributes�job-name="Monthly reports"���object-class�id-oc-job��2:�object-identification�document-identifier=273.1���attributes�document-description="March report",

document-type=id-val-document-type-printable���object-class�id-oc-document��3:�object-identification�document-identifier=273.2���attributes�document-description="April report" document-type=id-val-document-type-printable���object-class�id-oc-document��4:�object-identification�document-identifier=273.3���attributes�document-description="Font for Monthly report",

document-type=id-val-document-type-font���object-class�id-oc-document��If only the document-description for printable documents was desired, the filter expression would have been:

input parameters�input parameter value��object-class�id-oc-job��scope�1��object-identification�omitted (so get all objects)��object-filter�user-name=Smith AND �document-type=printable��requested-attributes�job-name, document-description��Because the scope is 1, the server visits each document and applies the predicate to the "concatenated object" consisting of the document and its parent job. Because the user-name attribute is a job attribute and document-type is a document attribute, the FilterItem containing a reference to user-name is applied to the parent job in the "concatenated object" and the FilterItem containing a reference to the document-type is applied to the document in the concatenated object. Because the FilterItems are ANDed in the example, the filter succeeds if both FilterItems are true. The server shall return each job object (with the requested job-name attribute) at most once and only if a containing document matches. The server shall return the job object just before the first child document. The server shall return each document object (with the requested document-description attribute) that the filter allows in order.

If the server is returning an (implementor-defined) derived class (see 6.3.17 and 8.2.4.4), the server shall return the object identifier for the derived class as the value of the object-class element, no matter whether the input class parameter had been the ISO/IEC 10175 base class object identifier or the (implementor-defined) derived class object identifier.

The correspondence between attributes of a print-job and the associated printer and server attributes is defined in Annex G.

The other parameters and sub-parameters are defined in previous clauses.

8.2.4.3	List-object-attributes Abstract-errors

Should the request fail, the server shall report one of the listed abstract-errors. The circumstances under which the server will report a particular abstract-error are defined in clause 8.4.

8.2.4.4	Listing Objects of Derived Classes

This sub-clause illustrates the requirements for listing objects defined by implementors using the object-oriented design approach of implementor classes that are derived from other classes (see 6.3.15) using a comprehensive example.

For example, the ISO DPA printer class is a generic base class. However, an implementor might choose to add attributes that are relevant to PCL printers and other attributes that are relevant to PostScript(TM) printers and define two new object classes that are derived from the ISO DPA base printer object class. If the implementor defines new object classes, the implementor shall assign an implementor-defined OID for each such derived class, say, id-oc-printer-ps and id-oc-printer-pcl.

NOTE - An implementor is not required to use class inheritance (and define a new id-oc-xxx OID), when adding attributes to an ISO DPA object class. An implementor may continue to use the ISO DPA base class and ISO DPA id-oc-xxx OID and add implementor-defined attributes to the base class. The advantage of deriving classes, comes when the implementor adds several different sets of attributes for different kinds of specialization, such as for PostScript and PCL printers. Then the additional attributes that belong only to the PostScript printers are not mixed up with the PCL printers, and vice versa. Such class inheritance reduces the number of attributes for a (derived) object class that are irrelevant to the particular object.

Further, the implementor may define additional derived classes that inherit their specification from a derived class, such as a PostScript Level 1 and a PostScript Level 2 printer class. Again the implementor shall assign additional implementor-defined OIDs for such classes, say, id-oc-printer-ps-level1 and id-oc-printer-ps-level2.

NOTE - the OID names do not need to reflect the inheritance chain, but reflecting the inheritance chain in the OID name may help implementors and users.

Consider the following example of derived object class definitions:

The ISO DPA base class printer (id-oc-printer) has the following attribute:

 printer-name

The derived class printer-ps (id-oc-printer-ps) has all the attributes of the ISO DPA (base) printer class, plus the additional attributes:

 ps-features-supported

 ppd-file-specification

and the derived class printer-pcl (id-oc-printer-pcl) has all the attributes of the ISO DPA (base) printer class, plus has the additional attributes:

 pcl-features-supported pjl-defaults

Further, suppose that the derived class printer-ps-level1 (id-oc-printer-ps-level1) has all the attributes of the Postscript printer class (id-oc-printer-ps), plus the additional attribute:

 level-1-defaults

and the derived class printer-ps-level2 (id-oc-printer-ps-level2) has all the attributes of the Postscript printer class (id-oc-printer), plus the additional attribute:

 level-2-device-string

For this example, we have the following class inheritance diagram:

 printer� / \� printer-pcl printer-ps� / \� level-1 level-2

NOTE - Clients will operate correctly, without being aware of the derived classes of object instances. In the above example, a client (and its users) have access to all objects and attributes even when only specifying the id-oc-printer object class in any ListObjectAttributes operation.

Suppose that printers A, B, C, D, E are ISO DPA (base), PCL, PostScript, PostScript level 1 and PostScript level 2 printer objects, respectively, giving the following object instance picture showing the same class inheritance:

 A� / \� B C� / \� D E

8.2.4.4.1	Listing specified object instances

When a ListObjectAttributes request is submitted for all attributes (requested-attributes element is omitted) for the indicated object class and object instance, the server shall return the following results:

input class�input instance�output class�returned attributes��printer�A�printer�printer-name��printer-pcl�A�server shall return: unknown-identification error���printer-ps�A�server shall return: unknown-identification error���printer-ps-level1�A�server shall return: unknown-identification error���printer-ps-level2�A�server shall return: unknown-identification error��������printer�B�printer-pcl�printer-name, pcl-features-supported, pjl-defaults��printer-pcl�B�printer-pcl�printer-name, pcl-features-supported, pjl-defaults��printer-ps�B�server shall return: unknown-identification error

���printer-ps-level1�B�server shall return: unknown-identification error���printer-ps-level2�B�server shall return: unknown-identification error��������printer�C�printer-ps�printer-name, ps-features-supported, ppd-file-specification��printer-pcl�C�server shall return: unknown-identification error���printer-ps�C�printer-ps-level1�printer-name, ps-features-supported, ppd-file-specification��printer-ps-level1�C�server shall return: unknown-identification error���printer-ps-level2�C�server shall return: unknown-identification error��������printer�D�printer-ps-level1�printer-name, ps-features-supported, ppd-file-specification, level-1-defaults��printer-pcl�D�server shall return: unknown-identification error���printer-ps�D�printer-ps-level1�printer-name, ps-features-supported, ppd-file-specification, level-1-defaults��printer-ps-level1�D�printer-ps-level1�printer-name, ps-features-supported, ppd-file-specification, level-1-defaults��printer-ps-level2�D�server shall return: unknown-identification error��������printer�E�same results as printer D���If the client specifies ps-features-supported in the requested-attributes parameter, for either printer A or printer B, the server shall not return the ps-features-supported attribute, since the ps-features-supported attribute is not defined for the A and B objects. Similarly, if the client specifies pjl-defaults in the requested-attributes parameter, for printer A or printers C, D, or E, the server shall not return the pjl-defaults attribute.

8.2.4.4.2	Listing all objects of a specified object class

When the client submits a ListObjectAttributes request for all attributes (requested-attributes element is omitted) for the indicated object class, but specifies no object instance, meaning that the server is to return all objects of the specified object class and all attributes of each returned object, the server shall return the following results:

input class�returned instances�output class�returned attributes��printer �A �printer �printer-name���B �printer-pcl �printer-name, pcl-features-supported, pjl-defaults���C �printer-ps �printer-name, ps-features-supported, ppd-file-specification���D �printer-ps-level1 �printer-name, ps-features-supported, ppd-file-specification, level-1-defaults���E �printer-ps-level2 �printer-name, ps-features-supported, ppd-file-specification, level-2-device-string�������printer-pcl �B �printer-pcl �printer-name, pcl-features-supported, pjl-defaults��printer-ps �C �printer-ps �printer-name, ps-features-supported, ppd-file-specification���D �printer-ps-level1 �printer-name, ps-features-supported, ppd-file-specification, level-1-defaults���E �printer-ps-level2 �printer-name, ps-features-supported, ppd-file-specification, level-2-device-string�������printer-ps-level1 �D �printer-ps-level1 �printer-name, ps-features-supported, ppd-file-specification, level-1-defaults�������printer-ps-level2 �E �printer-ps-level2 �printer-name, ps-features-supported, ppd-file-specification, level-2-device-string��8.3	DP-Administration Port Abstract-Operation Definitions�tc "8.3	DP-Administration Port Abstract-Operations Definitions"\l 2�

Clients may use the abstract-operations described in the following clauses to administer and control the flow of print-jobs through printers. Specific print-server implementations may limit usage of one or more of these abstract-operations to users with sufficient access rights, and/or may vary the facilities provided by a given abstract-operation depending upon the access rights assigned to the individual users served by the print-server.

The following ASN.1 productions make use of datatypes described in sub-clauses of clause 6.4. Clause 11 describes the steps a print-server shall perform for each operation.

8.3.1	Promote-job�tc "8.3.1	Promote-job"\l 3�

This abstract-operation allows an administrative user (e.g., a system administrator) to direct a server to schedule a specified job for printing on the next available requested printer. The mechanism used to provide this functionality is implementation-specific.

This abstract-operation is formally defined as follows:

PromoteJob ::=	ABSTRACT-OPERATION�		ARGUMENT		PromoteJobArgument�		RESULT			PromoteJobResult�		ERRORS		 	{	AccessError,�								AttributeError,�								SecurityError,�								SelectionError,�								ServiceError }

8.3.1.1	Promote-job-argument

The argument of this abstract-operation is formally defined as follows:

PromoteJobArgument	::= SEQUENCE {�		job-identification	[0] JobIdentifier,�		promote-message			[1] Message OPTIONAL,�										-- sets value of id-att-job-message-from-administrator�		common-arguments		[2] CommonArguments OPTIONAL }

8.3.1.2	Promote-job-result

The result of this abstract-operation is formally defined as follows:

PromoteJobResult ::= SEQUENCE {�		job-status			[0] SET OF Attribute OPTIONAL�								-- may include any job-status attributes -- }

8.3.1.3	Promote-job Abstract-errors

Should the request fail, the server shall report one of the listed abstract-errors. The circumstances under which the server will report a particular abstract-error are defined in clause 8.4.

8.3.2	Interrupt-job�tc "8.3.2	Interrupt"\l 3�

This abstract-operation allows an administrator to interrupt a currently printing job or printer to print another job on the printer. If a printer is specified, the server shall interrupt the job currently printing on that printer. The server shall automatically resume processing of the interrupted job at the point of the interrupt checkpoint, upon completion of the interrupting job.

Clients shall not use this abstract-operation to interrupt a job that has already interrupted another job. Should a client attempt to do so, a conforming server shall reject the abstract-operation, and report a cannot-interrupt-job AccessError.

A client may not use this abstract-operation to interrupt a job that is not currently printing. Should a client attempt to interrupt a job that is not currently printing, the server shall reject the abstract-operation and report an inappropriate-object-state AccessError.

This abstract-operation is formally defined as follows:

InterruptJob	::= ABSTRACT-OPERATION�		ARGUMENT		InterruptJobArgument�		RESULT			InterruptJobResult�		ERRORS			{	AccessError,�								AttributeError,�								SecurityError,�								SelectionError,�								ServiceError }

NOTE - Normally only an appropriately authorized user (such as an operator or system administrator) may interrupt a print-job or printer. However, this is a site and/or enterprise-specific policy decision, not mandated by this International Standard.

8.3.2.1	Interrupt-job-argument

The argument of this abstract-operation is formally defined as follows:

InterruptJobArgument ::= SEQUENCE {�		interrupted-job		[0] CHOICE {�				job-identifier			[0] JobIdentifier,�				printer-name				[1] SimpleName },�		interrupt-message	[1] Message OPTIONAL,�								-- sets value of id-att-job-message-from-administrator�		interrupting-job	[2] JobIdentifier,�		common-arguments	[3] CommonArguments OPTIONAL

If the client supplies an interrupt-message element as part of the request, the server shall set the value of the job's job-message-from-administrator attribute to the value of the interrupt-message element.

8.3.2.2	Interrupt-job-result

The result of this abstract-operation is formally defined as follows:

InterruptJobResult ::= SEQUENCE {�		interrupted-job-identifier	[0] JobIdentifier,�		job-status								[1] SET OF Attribute OPTIONAL�													-- may include any job-status attributes -- }

The server may return job-status attributes of the interrupted job.

8.3.2.3	Interrupt-job Abstract-errors

Should the request fail, the server shall report one of the listed abstract-errors. The circumstances under which the server shall report a particular abstract-error are defined in clause 8.4.

8.3.3	Pause-job�tc "8.3.3	Pause"\l 3�

This abstract-operation allows an administrator to pause an idle or currently printing job. The client may resume the job by issuing the Resume abstract-operation to return it to its pre-paused state.

If the server is currently processing the job (i.e., current-job-state value for the job is processing), the client may specify the job by either: 1) the job's job-identifier, or 2) the printer-name of the physical printer on which the job is printing. Pausing a processing job stops the printing of the job on its assigned printer(s), leaves the printer(s) active, and allows other jobs to be assigned to the printer(s).

If the server is not currently processing the job, the client shall specify the job by its job-identifier.

If the job is in the held, pending, or processing state, the server shall set the job's current-job-state to paused (see 9.2.8.1); otherwise, the server shall reject the PauseJob abstract-operation and return an inappropriate-object-state AccessError.

This abstract-operation is formally defined as follows:

PauseJob ::=	ABSTRACT-OPERATION�		ARGUMENT	PauseJobArgument�		RESULT		PauseJobResult�		ERRORS		{	AccessError,�							AttributeError,�							SecurityError,�							SelectionError,�							ServiceError }

NOTE - Normally only an appropriately authorized user (such as an operator or system administrator) may pause a print-job. However, this is a site and/or enterprise-specific policy decision, not mandated by this International Standard.

A server may have a limit on the number of jobs that may be paused on a given printer. If a client pauses a job that causes the server to exceed its limit, the server shall return a pause-limit-exceeded ServiceError.

When a client specifies a printer in the PauseJob abstract-operation, a server that allows jobs to be printed on more than one printer may pause either all job components on all printers or only the job component on the specified printer.

8.3.3.1	Pause-job-argument

The argument of this abstract-operation is formally defined as follows:

PauseJobArgument ::= SEQUENCE {�		paused-job				[0] CHOICE {�				job-identifier			[0] JobIdentifier,�				printer-name				[1] SimpleName },�		pause-message		[1] Message OPTIONAL,�									-- sets value of id-att-job-message-from-administrator�		common-arguments	[2] CommonArguments OPTIONAL }

When the client supplies a pause-message, the server shall replace the job-message-from-administrator attribute of the paused job with the supplied parameter.

8.3.3.2	Pause-job-result

The result of this abstract-operation is formally defined as follows:

PauseJobResult ::= SEQUENCE {�		paused-job-identifier	[0] JobIdentifier,�		checkpoint						[1] SET OF PrintCheckpoint,�		job-status						[2] SET OF Attribute OPTIONAL�												 -- may include any job-status attributes -- }

The server shall supply checkpoint information as part of the result to indicate where the client may later resume the job (see 9.2.8.17, print-checkpoint). The client subsequently provides this information to the print-server to enable it to resume job processing. A server should encode the checkpoint information in such a way as to protect against clients submitting ResumeJob operations after tampering with the checkpoint information. The server shall identify the format of the context-info element of each checkpoint value in the checkpoint- format element. When a paused job with checkpoint information is resumed, the server may assign the job to a different physical printer provided the checkpoint information can be honored.

The server may return job-status attributes of the paused job.

8.3.3.3	PauseJob Abstract-errors

Should the request fail, the server shall report one of the listed abstract-errors. The circumstances under which the server shall report a particular abstract-error are defined in clause 8.4.

8.3.4	Resume-job�tc "8.3.4	Resume"\l 3�

This abstract-operation allows an administrator to resume a currently paused job.

If the job is in the paused state, the server shall set the job's current-job-state to held or pending, depending on the state of the job when the PauseJob abstract-operation was performed (see 9.2.8.3, previous-job state); otherwise, the server shall reject the ResumeJob abstract-operation and return the inappropriate-object-state AccessError.

This abstract-operation is formally defined as follows:

ResumeJob ::=	ABSTRACT-OPERATION�		ARGUMENT			ResumeJobArgument�		RESULT				ResumeJobResult�		ERRORS				{	AccessError,�									AttributeError,�									SecurityError,�									SelectionError,�									ServiceError }

Normally only an appropriately authorized user (such as an operator or system administrator) may resume a print-job.

As a result of modifications to a paused print-job, or changes in the print-system, when resuming a job the server may place the job into a state that is different from the state it was in when it was paused. When a paused job with checkpoint information is resumed, the server may schedule the job to a different physical printer than the one it was previously assigned provided the checkpoint information can be honoured.

8.3.4.1	Resume-job-argument

The argument of this abstract-operation is formally defined as follows:

ResumeJobArgument ::= SEQUENCE {�		resumed-job			[0] JobIdentifier,�		resume-message		[1] Message OPTIONAL,�									-- sets value of id-att-job-message-from-administrator�		checkpoint				[2] SET OF PrintCheckpoint OPTIONAL,�		common-arguments	[3] CommonArguments OPTIONAL }

When the client supplies a resume-message, the server shall replace the job-message-from-administrator attribute of the resumed job with the supplied parameter.

If the server does not support the specified checkpoint-format of any value of the checkpoint element, the server shall reject the request and return an invalid-checkpoint ServiceError.

8.3.4.2	Resume-job-result

The result of this abstract-operation is formally defined as follows:

ResumeJobResult ::= SEQUENCE {�		job-status		[0] SET OF Attribute OPTIONAL�							-- may include any job-status attributes -- }

The server may return job-status attributes of the resumed job.

8.3.4.3	ResumeJob Abstract-errors

Should the request fail, the server shall report one of the listed abstract-errors. The circumstances under which the server shall report a particular abstract-error are defined in clause 8.4.

8.4	Abstract-Errors�tc "8.4	Abstract-Errors"\l 2�

This clause defines the abstract-errors associated with using the abstract-operations at the DP-Server ports.

If the server reports an error as the result of an abstract-operation, this means that the abstract-operation has not been performed.

Associated with each error is a problem parameter. This parameter is a refinement of the related error; it may be either a standard-problem (that is, a value defined in this International Standard) or an extended-problem (that is, an implementation-defined value), in which case it is defined as an object identifier. In addition to the problem parameter, the server shall return the attributes indicated in the ASN.1 to further describe the error.

Also associated with each error is an error-message element. A server shall provide in the error-message element a fully composed and properly translated human readable message describing the error condition.

The server shall return the error-message element in the locale requested by the client in the operation-locale attribute, if supplied and supported; otherwise, the server shall return the error message in the server’s locale (as specified by the server’s locale attribute) and shall convert the coded character set to that requested by the client, if supported.

Depending on implementation, a client may choose to use:

a)	the fully composed error-message directly and output its text string value to the user or

b)	the problem element to select an appropriate message from a catalog in the locale of the user, format the values of the returned attributes, substitute them into the catalog message text, and output the merged text to the user.

c)	a combination of 1 and 2, perhaps outputting the error-message only if the user requests more help from the client in understanding the error.

Any message the server provides in the error-message element shall require no further processing such as insertion of additional error information, translation, character set conversion, etc.

The following ASN.1 productions make use of data types described in 6.4.

8.4.1	Access-error�tc "8.4.1	Access-error"\l 3�

An AccessError reports a problem encountered when attempting to access a DPA-object specified in the argument of an abstract-operation.

AccessError ::= ABSTRACT-ERROR�	PARAMETER AccessErrorSequence

AccessErrorSequence ::= SEQUENCE OF SEQUENCE {�		object-identification		[0] ObjectIdentification, -- see 8.2.4.1�		problem								[1] AccessProblem�		error-message					[2] ErrorMessage }

AccessProblem ::= CHOICE {�	standard-problem ENUMERATED {�		inappropriate-object-class		(1),�		insufficient-access-rights		(2),�		cannot-interrupt-job					(3),�		inappropriate-object-state		(4) },�	extended-problem				OBJECT IDENTIFIER }

An AccessProblem may be one of the following:

a)	inappropriate-object-class: a client may not use this abstract-operation on this object;

b)	insufficient-access-rights: a DP-User who does not have sufficient access rights to a DPA-Object or the attributes has made an attempt to access attribute values;

c)	cannot-interrupt-job: a client has made an attempt to interrupt a job that has already interrupted another job;

d)	inappropriate-object-state: a client has made an attempt to perform an abstract-operation on an object that is not in an appropriate state for that operation.

8.4.2	Attribute-error�tc "8.4.2	Attribute-error"\l 3�

An AttributeError reports one or more problems encountered by the DP-Server while attempting to process an abstract-operation or to list or modify attributes of one or more objects.

NOTE - The use of the Attribute datatype on the attribute element of AttributeError allows the same code that processes Attributes in an abstract-operation to be used for error handling.

AttributeError ::= ABSTRACT-ERROR�	PARAMETER AttributeErrorSequence

AttributeErrorSequence ::= SEQUENCE {�		object-identification	[0] ObjectIdentification OPTIONAL,�		problems						[1] SEQUENCE OF SEQUENCE {�				problem							[0] AttributeProblem,�				attribute						[1] Attribute,�				error-message					[2] ErrorMessage } }

AttributeProblem ::= CHOICE {�	standard-problem		ENUMERATED {�		invalid-attribute-syntax						(2),�		undefined-attribute-type						(3),�		inappropriate-matching							(4),�		constraint-violation								(5),�		unsupported-attribute-type					(6),�		illegal-modification								(7),�		inconsistent-with-other-attributes				(8),�		undefined-attribute-value						(9),�		unsupported-attribute-value					(10),�		invalid-non-compulsory-attribute-modification 		(11),�		per-job-attribute-inadmissible				(12),�		not-multi-valued									(13),�		mandatory-attribute-omitted					(14),�		attribute-illegal-for-object-class				(15) },�	extended-problem OBJECT IDENTIFIER }	

The object-identification parameter is absent in an AttributeError in the following cases:

-	when a Print abstract-operation caused the error and the server encountered an AttributeProblem when processing the job-attributes component of the abstract-operation's argument;

-	when a ListObjectAttributes abstract-operation caused the error and the server encountered an AttributeProblem when processing the selector component of the abstract-operation's argument.

The problem parameter specifies the AttributeProblem encountered. Each problem (identified below) is accompanied by an indication of the AttributeId and, if necessary to avoid ambiguity, the attribute-value that caused the problem:

a)	invalid-attribute-syntax: A purported attribute value, specified as an argument of the abstract-operation, does not conform to the attribute syntax of the attribute type;

b)	undefined-attribute-type: A client provided an attribute type as an argument to an abstract-operation that the server did not recognize and could not be ignored because it was compulsory, i.e., was not listed in the job-non-compulsory-attributes or non-compulsory-attributes attributes;

c)	inappropriate-matching: A client made an attempt, e.g. in a filter, to use a matching rule not defined for the attribute syntax specified for the attribute type concerned;

d)	constraint-violation: A client supplied an attribute value in the argument of an abstract-operation that does not conform to the static constraints imposed by a functional standard or by the attribute definition (e.g. the value exceeds the maximum size allowed);

e)	unsupported-attribute-type: A client specified a compulsory attribute that was understood but not supported by the server. The server should return the attribute value(s) in the AttributeError parameter as submitted;

f)	illegal-modification: A client made an attempt to modify an attribute (i.e. to add or remove the entire attribute or some of its values), which has some specific behavior in DPA, that is, either a DP-Server assigned attribute, or an attribute which, once assigned by the DP-User, may not be modified in the way specified in the abstract-operation;

g)	inconsistent-with-other-attributes: A client made an attempt to specify an attribute in a way inconsistent with other attributes of the same print-job. In the ModifyJob abstract-operation, an inconsistency with some existent attribute is not reported if the inconsistency is eliminated by further modifications specified in the same abstract-operation. If two attributes enter in conflict, the DP-Server may report an AttributeProblem for either of them, or for both;

h)	undefined-attribute-value: A client specified a compulsory attribute value that is not understood by the DP-Server;

i)	unsupported-attribute-value: A client specified a compulsory attribute with a value that is not supported by the DP-Server or the specified logical printer. The server should return the value(s) in the AttributeError parameter that is(are) not supported;

j)	invalid-non-compulsory-attribute-modification: A client attempted to change a non-compulsory job or document attribute to compulsory (by removing the attribute-type object identifier from the job's job-non-compulsory-attributes attribute or the document's non-compulsory-attributes attribute) and the server or the printer does not support that attribute-type and/or one or more of its values;

k)	per-job-attribute-inadmissible: A client submitted a compulsory per-job attribute (attribute-type object identifier not present in the job's job-non-compulsory-attributes attribute), in the argument of a Print abstract-operation following the first Print abstract-operation of the job;

l)	not-multi-valued: A client made an attempt to supply more than one element for, or to add another value to, the value component of a single-valued attribute;

m)	mandatory-attribute-omitted: a client omitted an attribute that is required for the abstract-operation;

n)	attribute-illegal-for-object-class: the client supplied a job attribute in the job-att-modification element of ModifyJobArgument when the client also supplied a document-number. Only document attributes are allowed when specifying a document-number.

8.4.3	Document-access-error�tc "8.4.3	Document-access-error"\l 3�

A DocumentAccessError reports a problem occurring when the server attempts to access the document referenced in the print-job. This applies to internal as well as to external references.

DocumentAccessError ::= ABSTRACT-ERROR�	PARAMETER DocumentAccessErrorSequence

DocumentAccessErrorSequence ::= SEQUENCE {�		problem 						[0] DocumentAccessProblem,�		object-identification	[1] ObjectIdentification, -- See 8.2.4.1�		error-message				[2] ErrorMessage }

DocumentAccessProblem ::= CHOICE {�	standard-problem ENUMERATED {�		document-not-available		(1),�		referent-modified				(2),�		access-denied					(3),�		unknown-document				(4),�		no-documents-in-job			(5) },�	extended-problem			OBJECT IDENTIFIER }

A DocumentAccessProblem may be one of the following:

a)	document-not-available: The client specified a document number in the abstract-operation's argument that is not available at that moment because of some (temporary) access problem (e.g. when attempting to read the content of the document);

b)	referent-modified: The client specified a document in the abstract-operation's argument that is identified by means of a DOR (distinguished-object-reference). However, the referenced document was modified after the produce-time indicated in the QoS-level component of the DOR; [See ISO/IEC 10031-2.]

c)	access-denied: The server has attempted to read a document on behalf of a DP-User with insufficient access rights to read the referenced document;

d)	unknown-document: The client specified a document in the abstract-operation's argument that has been deleted (“dangling reference”);

e)	no-documents-in-job: The client attempted to access or create a print-job that contained no documents.

NOTE - A document-access-error is most likely to occur after the server returns control to the client. However, this International Standard does not define an asynchronous method for reporting events/errors. Therefore clients must query periodically to determine job status, by means of the ListObjectAttributes abstract-operation.

8.4.4	Printer-error�tc "8.4.4	Printer-error"\l 3�

A PrinterError reports a problem occurring when the server attempts to access the selected printer during the processing of the abstract-operation in which it occurs.

PrinterError ::= ABSTRACT-ERROR�	PARAMETER PrinterErrorSequence

PrinterErrorSequence ::= SEQUENCE {�		problem							[0] PrinterProblem,�		object-identification	[1] ObjectIdentification, -- see 8.2.4.1�		error-message				[2] ErrorMessage }

PrinterProblem ::= CHOICE {�	standard-problem		ENUMERATED {�		printer-error							(1),�		printer-needs-attention				(2),�		printer-needs-key-operator		(3) },�	extended-problem				OBJECT IDENTIFIER }

A PrinterProblem may be one of the following:

a)	printer-error: the printer allocated to that print-job has reported an error;

b)	printer-needs-attention: the printer allocated to that print-job needs operator attention;

c)	printer-needs-key-operator: the printer allocated to that print-job needs key operator attention.

8.4.5	Security-error�tc "8.4.5	Security-error"\l 3�

A SecurityError reports a problem occurring when a DP-User presents credentials to a DP-Server. This may occur either when binding or when executing a DPA abstract-operation bearing (proxy) credentials.

SecurityError ::= ABSTRACT-ERROR�	PARAMETER SecurityErrorSequence

SecurityErrorSequence ::= SEQUENCE {�		problem					[0] SecurityProblem,�		error-message		[1] ErrorMessage }

SecurityProblem ::= CHOICE {�	standard-problem ENUMERATED {�		inappropriate-authentication			(1),�		invalid-credentials						(2),�		insufficient-operation-rights		(3),�		invalid-pac									(4) },�	extended-problem				OBJECT IDENTIFIER }

A SecurityProblem may be one of the following:

a)	inappropriate-authentication: The level of security associated with the requester's credentials is inconsistent with the level of protection requested; e.g., simple credentials are supplied where certified credentials are required;

b)	invalid-credentials: The client supplied invalid credentials in the DpBindArgument;

c)	insufficient-operation-rights: The client does not have the right to carry out the requested abstract-operation (e.g. Interrupt), independently of the DPA-Object involved in the abstract-operation;

d)	invalid-pac: The client supplied an invalid PAC in CommonArguments.

8.4.6	Selection-error�tc "8.4.6	Selection-error"\l 3�

A SelectionError reports a problem related to the identification of an instance or instances of a DPA-Object specified in the argument of an abstract-operation. The DPA-Object instance(s) which caused the problem is reported as it was specified, accompanied by an indication of the problem(s) encountered.

SelectionError ::= ABSTRACT-ERROR�	PARAMETER SelectionErrorSequence

SelectionErrorSequence ::= SEQUENCE OF�		SEQUENCE {�			problem								[0] SelectionProblem,�			attribute							[1] Attribute OPTIONAL,�			object-identification		[2] ObjectIdentification, -- see 8.2.4.1�			error-message						[3] ErrorMessage }

SelectionProblem ::= CHOICE {�	standard-problem ENUMERATED {�		invalid-identification		(1),�		unknown-identification		(2) ,�		object-already-exists		(3) }�	extended-problem			OBJECT IDENTIFIER }

A SelectionProblem may be one of the following:

a)	invalid-identification: The client specified a syntactically incorrect identifier;

b)	unknown-identification: The server was unable to find the specified object.

c)	object-already-exists: The client invoked an operation that attempted to create an object with the same object identification as an existing object;

NOTE - Abstract-operations in Part 3 may generate this error. For example, creating a printer object that already exists

8.4.7	Service-error�tc "8.4.7	Service-error"\l 3�

A ServiceError reports a problem related to the provision of the service, which is not due to an incorrect abstract-operation request or the requester's access rights.

ServiceError ::= ABSTRACT-ERROR�	PARAMETER ServiceErrorSequence

ServiceErrorSequence ::= SEQUENCE OF�		SEQUENCE {�			problem							[0] ServiceProblem,�			attribute						[1] Attribute OPTIONAL,�			object-identification	[2] ObjectIdentification, -- see 8.2.4.1�			error-message					[3] ErrorMessage }

ServiceProblem ::= CHOICE {�	standard-problem ENUMERATED {�		server-busy											(1),�		server-unavailable								(2),�		operation-too-complex							(3),�		resource-limit-exceeded							(4),�		unclassified-server-error						(5),�		too-many-items-in-list							(6),�		compulsory-resource-not-available				(7),�		cancel-document-unsupported					(8),�		modify-document-unsupported					(9),�		print-multiple-documents-unsupported			(10),�		unsupported-parameter-value					(11),�		invalid-checkpoint								(12),�		invalid-continuation-context					(13),�		pause-limit-exceeded								(14),�		unsupported-operation							(15),�		clean-logical-printer-unsupported }, [TC-1]�	extended-problem				OBJECT IDENTIFIER }

A ServiceProblem reported may be one of the following:

a)	server-busy: The DP-Server is presently too busy to perform the requested abstract-operation, but may be able to do so after a short while;

b)	server-unavailable: The DP-Server is currently unavailable;

c)	operation-too-complex: The client requested an abstract-operation that is too complex either syntactically or semantically;

d)	resource-limit-exceeded: The server has exceeded its resource allocations while attempting to process a request; this may happen when a very large object is to be created or copied in the DP-Server;

e)	unclassified-server-error: This is a place-holder for “any other” errors, primarily those due to software bugs in a yet unstable DP-Server implementation, to make it nevertheless possible to access it remotely before it becomes robust;

f)	too-many-items-in-list: The client specified an abstract-operation that provided more items in a list than is supported by the server;

g)	compulsory-resource-not-available: The client specified a compulsory attribute that cannot be satisfied because the value requested is not available;

h)	cancel-document-unsupported: A client requested to cancel an individual document within a multiple document job of a server that does not support this capability;

i)	modify-document-unsupported: A client requested to modify the parameters associated with an individual document within a multiple document job of a server that does not support this capability;

j)	print-multiple-documents-unsupported: A client requested to print multiple documents within a single job of a server that does not support this capability;

k)	unsupported-parameter-value: A client specified a component of an argument to an abstract-operation, that is not an attribute, with a value not supported by the server. For example, a server may not support the printer-name element of the PauseJobArgument of the Pause-job operation;

l)	invalid-checkpoint: A client supplied an invalid checkpoint to the ResumeJob abstract-operation. A checkpoint value is invalid if altered or corrupted;

m)	invalid-continuation-context: A client supplied an invalid continuation context to the ListObjectAttributes abstract-operation. A continuation context is invalid if altered;

n)	pause-limit-exceeded: A client made either a PauseJob or InterruptJob request to a server that had exceeded the number of jobs that may be paused. The server may define this limit on a per printer or per server basis.

o)	unsupported-operation: A client made a request that is not supported (or is not recognized) by the server.

p)	clean-logical-printer-unsupported: A client made a request to clean a logical-printer that the server considers to be a gateway rather than a container. [Refer to the Clean operation in Part 3.] [TC-1]

8.4.8	Update-error�tc "8.4.8	Update-error"\l 3�

An UpdateError reports a problem encountered when a client attempts to modify (update), explicitly, an existing DPA-Object. Cancellation of a print-job is also considered here as a modification.

UpdateError ::=	ABSTRACT-ERROR�	PARAMETER	UpdateErrorSequence

UpdateErrorSequence ::= SEQUENCE {�		problem							[0] UpdateProblem,�		object-identification	[1] ObjectIdentification, -- see 8.2.4.1�		error-message				[2] ErrorMessage }

UpdateProblem ::=	CHOICE {�	standard-problem		ENUMERATED {�			no-modifications-allowed			(1),�			insufficient-update-rights			(2),�			previous-operation-incomplete		(4),�			cancellation-not-possible			(5) ,� resubmit-job-not-possible			(6) , [TC-1]� deletion-not-possible				(7) },�	extended-problem		OBJECT IDENTIFIER }

An UpdateProblem may be one of the following:

a)	no-modifications-allowed: The client referenced a print-job in the abstract-operation's argument that is processing and cannot be modified now;

b)	insufficient-update-rights: A DP-User with insufficient access rights to a DP-Object made an attempt to modify that object;

c)	previous-operation-incomplete: A client made an attempt to modify an object that is currently being processed by another operation. New operations are not allowed until the previous ones finish;

d)	cancellation-not-possible: A client made an attempt to cancel a print-job that was in a state for which the server implementation does not support cancellation, such as while the job is printing (most implementations should permit cancellation while printing) or was already complete.

e)	resubmit-job-not-possible: A client made a request to resubmit a job that is currently printing. [TC-1]

f)	deletion-not-possible: A client made a request to delete a server or physical-printer that contains jobs.

8.4.9	Error Precedence�tc "8.4.9	Error Precedence"\l 3�

Should several error conditions occur simultaneously for the same DPA abstract-operation only one of them is reported to the requester. The precedence of these error conditions is as follows beginning with the most important:

SecurityError�ServiceError�AccessError�PrinterError�SelectionError�DocumentAccessError�AttributeError�UpdateError

8.5	Abstract-Events�tc "8.5	Abstract-Events"\l 2�

This clause defines the abstract-event classes and types that may occur during the course of an abstract-operation invoked via a DP-Server port. Clause 9.2.3 defines the job-event-handling attributes that are utilized to convey the event information.

Each different kind of event is defined as an event-type, identified by a unique object identifier. Each event-type is defined to belong to one of five event-classes, each of which is also identified by an object identifier.

8.5.1	Event-aborted class�tc "8.5.1	Event-aborted class"\l 3�

An abort event occurs when a print-job or document is aborted. The following event types are defined to indicate the originator of the abort;

a)	id-val-event-job-aborted-by-server: The server aborted the print-job;

b)	id-val-event-job-cancelled-by-operator: The operator cancelled the print-job;

c)	id-val-event-job-cancelled-by-user: The user cancelled the print-job.

d)	id-val-event-document-aborted-by-server: The server aborted the document;

e)	id-val-event-document-cancelled-by-operator: The operator cancelled the document;

f)	id-val-event-document-cancelled-by-user: The user cancelled the document.

8.5.2	Event-error class�tc "8.5.2	Event-error class"\l 3�

An error event occurs whenever (and in addition to an Abstract-error) an error occurs. In general, an error event signals a condition that may prevent the job from completing successfully, depending upon the settings of other parameters. The following error event types are defined:

a)	id-val-event-error-past-deadline: The deadline time for the print-job (established by the job-deadline-time attribute of the Print or ModifyJob abstract-operation) has passed, but the print-job has not been completed;

b)	id-val-event-error-past-discard: The discard time for the print-job (established by the job-discard-time attribute of the print or ModifyJob abstract-operation) has passed, but the print-job has not been completed;

c)	id-val-event-error-printer-shutdown: The printer the job was printing on shut down before the job completed;

d)	id-val-event-error-no-resource: A needed resource is not available or has become unavailable. This will include resources that are expected to become available after the deadline time established for the print-job. Resources whose time for becoming available again is 'unknown' will always be unavailable;

e)	id-val-event-error-unrecognized-resource: A resource specified to be required for the print-job is not known to the server;

f)	id-val-event-error-no-document: A document specified to be printed for this print-job is not accessible or available to the server;

g)	id-val-event-error-job-submission-not-complete: The server has not received the final Print abstract-operation of a job within some predetermined time interval;

h)	id-val-event-error-page-select: The client specified a page in PageSelect that could not be found in the document;

i)	id-val-event-error-document-content: The server detected an error in the document content during printing, e.g. a syntactic error in the page description language;

j)	id-val-event-error-other: The server has encountered some error condition not categorized as one of the others.

8.5.3	Event-warning class�tc "8.5.3	Event-warning class"\l 3�

A warning event occurs whenever a condition arises which affects the processing of the user's print-job. In general, a warning event signals a condition that will not prevent completion of the job, but may indicate that some action is needed on the part of the user or operator. The following warning event types are defined:

a)	id-val-event-warning-resource-needs-attention: A resource (e.g., a printer, input-tray, etc.) needs the attention of a person, not necessarily a key operator. Which conditions need a key operator (a trained person for the particular resource) vs. an untrained person are implementation-dependent and may vary from resource to resource;

b)	id-val-event-warning-resource-needs-operator: A resource (e.g., a printer, input-tray, etc.) needs the attention of a key operator. Which conditions need a key operator vs. an untrained person are implementation-dependent and may vary from resource to resource;

c)	id-val-event-warning-printer-shutdown: The printer to be used for this job was shut down before the job was started;

d)	id-val-event-warning-job-modified: The print-job was modified by the user or an operator using the ModifyJob abstract-operation;

e)	id-val-event-warning-close-to-deadline: The deadline time (specified by the print-job's job-deadline-time) for printing the job is close. The amount of time remaining which triggers this event is implementation-dependent;

f)	id-val-event-warning-close-to-discard-time: The retention period (specified by the print-job's job-retention-period or job-discard-time) is near an end. The amount of time remaining that triggers this event is implementation-dependent;

g)	id-val-event-warning-criterion-exceeded: The event that a previously specified criterion threshold value has been exceeded;

h)	id-val-event-warning-duplicate-attribute-ignored: A particular attribute has been duplicated in the argument of an abstract-operation. The later attribute takes precedent, and earlier instances of the attribute are ignored;

i)	id-val-event-warning-attribute-ignored: The server has ignored a non-compulsory attribute or value;

j)	id-val-event-warning-job-paused: The print-job has been paused by the user or operator by means of the PauseJob abstract-operation;

k)	id-val-event-warning-job-interrupted: The print-job has been interrupted by the user or operator by means of the InterruptJob abstract-operation;

l)	id-val-event-warning-other: The server has encountered some warning condition not categorized as one of the others.

8.5.4	Event-report class�tc "8.5.4	Event-report class"\l 3�

A report event occurs whenever a significant point in the processing of the job occurs. The following report event types are defined:

a)	id-val-event-report-job-completed: The print-job has completed successfully;

b)	id-val-event-report-checkpoint-taken: The server has taken a job checkpoint;

c)	id-val-event-report-resource-message: A message about a resource which is used by this job should be read;

d)	id-val-event-report-job-discarded: The server discarded a print-job because the time specified by the print-job's job-retention-period had expired or the time specified by job-discard-time had passed (the job must have printed successfully; otherwise, an event-error would occur);

e)	id-val-event-report-file-transferred: The client or server has completed a file transfer. This event may be indicated by a client or third party transfer service for files transferred to a print-service, or by the print-service or a third party transfer service for files transferred to a print-client;

f)	id-val-event-report-job-promoted: The user or operator has promoted the print-job by means of the PromoteJob abstract-operation;

g)	id-val-event-report-job-resumed: The user or operator has resumed the print-job by means of the ResumeJob abstract-operation;

h)	id-val-event-report-processing-started: The server has begun processing the print-job.

i)	id-val-event-report-printing-started: The server has begun printing the job (making marks on the medium).

j)	id-val-event-report-job-cancelled: The server has completed cancelling the print-job. [TC-1]

k)	id-val-event-report-printer-cleaned: The clean operation has been completed on the printer.

l)	id-val-event-report-server-cleaned: The clean operation has been completed on the server.

m)	id-val-event-report-job-resubmitted: The job has been resubmitted and accepted by the new server (which may be the same as, or different from, the original server).

8.5.5	Event-state-changed class�tc "8.5.5	Event-state-changed class"\l 3�

A state-change event occurs whenever the state of a job, printer or server changes. The states of jobs, printers, and servers are defined in clauses 9.2.8.1, 9.4.9, and 9.5.4, respectively. The following state-change event types are defined:

a)	id-val-event-state-changed-job: The state of the job has changed;

b)	id-val-event-state-changed-printer: The state of the printer has changed;

c)	id-val-event-state-changed-server: The state of the server has changed.

8.5.6	Event Class identifiers�tc "8.5.6	Event Class identifiers"\l 3�

An event-class identifier is used in the Notification Profile or the Logging Profile to indicate that the user (or designate) requires that if any event type of that class occurs, it is to be noted, i.e., by log-file entry or notification to the user, as specified by the user. The following event-classes are defined:

a)	id-val-event-class-aborted: The user wants to be notified of and/or the server to log all abort events;

b)	id-val-event-class-error: The user wants to be notified of and/or the server to log all error events;

c)	id-val-event-class-warning: The user wants to be notified of and/or the server to log all warning events;

d)	id-val-event-class-report: The user wants to be notified of and/or the server to log all report events;

e)	id-val-event-class-state-changed: The user wants to be notified of and/or the server to log all state-change-events.

ISO/IEC 10175-1:1996(E)

			ISO/IEC 10175-1:1996(E)

�page �804644�

				�page �154545�

