Subj: Proposal for extending IPP for parallel attributes
From: Tom Hastings, Bob Herriot, and Roger deBry

Date: 3/20/98, version 0.9
File: ipp-dict-1setOf-1setOf.doc
There are 2 issues labeled with "ISSUE n:" which we need to address
1 Problem Statement

There is no good way to add attributes that contain several fields, whether the fields are mandatory or optional. Instead of each new attribute that needs more than one field (struct), requiring an ad hoc attribute syntax, such as we have done for the 'resolution' attribute syntax for use in the "printer-resolution" attribute, it would be desirable to have a simple, general mechanism for representing multi-field values. It would also be desirable to allow fields to be omitted, when the attribute specification allows that. This mechanism would be useful for both new attributes that we might add to the IPP standard, that might be registered, or that implementers might implement as private extensions.

2 A Change in Direction

After looking at many solutions for representing dictionaries, we realized that we could meet our stated requirements more easily by adding the semantics of 1setOf 1setOf X and an encoding mechanism to represent it, instead of creating a new dictionary attribute syntax or by extending the attribute naming mechanism.

We investigated five alternatives for adding a new dictionary attribute syntax (currently reserved as 0x34 in the Encoding and Transport document). We could not come up with a clean method that met the primary requirement that a parser without dictionary support could correctly ignore the dictionaries. See the end of this document for the list of rejected alternatives and the rejected encoding as a new attribute syntax.

We also rejected extending the attribute naming mechanism to allow named collections of attributes and index values for each collection instance.

Instead we propose to use the semantics of parallel multi-valued attributes that we have in IPP/1.0, such as we already have for the "printer-uri-supported" and "uri-security-supported" Printer attributes, in order to achieve the effect of multi-valued dictionaries. Using IPP/1.0 parallel attribute semantics, we can represent the effect of a dictionary in which each attribute in the dictinary instance is single valued. Instead of using the term dictionary, we use the term "parallel attributes". The Ith value of each attribute in a set of parallel attributes are associated with each other.
In order to represent the effect of a dictionary which contains attributes that are multi-valued, we only need to introduce the model semantics of:

1setOf 1setOf X
and a way to encode it. Then the Ith value of the parallel attribute has multiple values (the second 1setOf) that are associated with the Ith values of the other parallel attributes.

3 Requirements for the suggested mechanism
The requirements are written as if it were a 'dictionary' mechanism (though it is not). The mechanism for use with IPP needs to have the following semantic properties:

1. The dictionary mechanism provides a way to supply and query a set of attributes as a logical unit. Then each 'field' that is present in the dictionary would be self-identifying by its attribute name.

2. The attributes in a dictionary are unordered. Therefore, an IPP object MUST be able to accept attributes in a dictionary in any order.

3. The semantics of a dictionary attribute specifies which attributes in a dictionary instance are MANDATORY for the IPP object to support and which are OPTIONAL for the IPP object to support.

4. The semantics of a dictionary attribute specifies which attributes in a dictionary instance are required for the requester to supply and which the requester may omit.

5. A dictionary attribute could be single valued, i.e., with one dictionary value, or could be multi-valued.

6. An attribute in a dictionary can be single valued or multi-valued as well.

NOTE: It is only this requirement that forces us to add the concept of 1setOf 1setOf. Otherwise, we could probably get away with current IPP/1.0. But it is unacceptable to restrict an attribute in a dictionary to be single valued. For example, registering for events need multiple sets of multiple values.
7. As with all attribute values, if an IPP object does not support a dictionary attribute, it must be easy for the IPP object to ignore the dictionary attribute.

8. The syntax of each dictionary value is the same as a group of attributes in a request or response, so each attribute in a dictionary value instance has its keyword name, its attribute syntax code, and its value.

9. An implementor MAY support additional registered or private attributes in a dictionary. In other words, a dictionary is extensible, just like an attribute group in an operation or response.

10. Finally, an attribute in a dictionary can be itself a dictionary, so that nesting could be allowed, if the specification of a dictionary attribute allowed a dictionary attribute to be contained in its dictionary.

4

4.1

4.2

4.3

5 Examples of dictionary usage

This section list examples of the usage of the proposed dictionary mechanism.

5.1 Printer resolution: feed, cross-feed, and units

For example, the IPP/1.0 "printer-resolution" attribute was defined using a very ad hoc 'resolution' attribute syntax. Had we used the parallel attribute mechanism, we might have chosen to use it here, though we wouldn't have had to either. If we had used the parallel attribute mechanism for "printer-resolution", there would have been the following three Job Template attributes: "printer-resolution", "printer-resolution-crossfeed", "printer-resolution-units". We could have also specified that the "printer-resolution-cross-feed" and the "printer-resolution-units" attributes are optional for a client to supply and when omitted, the cross-feed resolution is the same as the feed resolution and the units are inches.

Attribute name
syntax
in request

"printer-resolution"
integer
required

"printer-resolution-cross-feed"
integer
optional

"printer-resolution-units"
enum
optional
The system administrator could indicate the combinations that are supported by the following parallel xxx-supported (1setof X) attributes, which represent 300x300, 600x300, and 600x600 (300x600 is not supported):

"printer-resolution-supported"
300, 600, 600

"printer-resolution-cross-feed-supported"
300, 300, 600

"printer-resolution-units-supported"
3, 3, 3
5.2

5.3

5.4 "job-notify" Job Template attribute example

In order to meet the IPP notification requirements, the requester must be able to supply one or more notification profile values, where each profile value consists of a set of "job-notify-events", one "job-notify-method", (which does not include the target for delivery, so that the system administrator can specify a default delivery method, which might include TCP/IP sockets), multiple "job-notify-addresses", one "job-notify-natural-language", and possibly multiple "job-notify-requested-attributes". So we could register a set of parallel "job-notify" Job Template attributes. There might be a similar set of parallel "printer-notify" attribute that is set by means outside of the IPP/1.0 protocol, but is independent of jobs, so that they would specify notification to operators. Both the "job-notify" and the "printer-notify" dictionary attributes are MULTI-VALUED.

The "job-notify" parallel attributes would have the following syntax:

Attribute name
syntax

"job-notify-method"
uriScheme

"job-notify-events"
1setOf enum

"job-notify-addresses"
text

"job-notify-natural-language"
naturalLanguage

"job-notify-requested-attributes"
1setOf keyword

"job-notify-method-default"
uriScheme

"job-notify-events-default"
1setOf enum

"job-notify-addresses-default"
text

"job-notify-natural-language-default"
naturalLanguage

"job-notify-requested-attributes-default"
1setOf keyword

"job-notify-method-supported"
1setOf uriScheme

"job-notify-events-supported"
1setOf 1setOf enum

"job-notify-addresses-supported"
1setOf text

"job-notify-natural-language-supported"
1setOF naturalLanguage

"job-notify-requested-attributes-supported"
1setOf 1setOf keyword

A requested on a Print-Job request could supply the following parallel attribute values in order to send immediate 'job-aborted' and 'job-canceled' events to smith (himself) and e-mail 'job-completed' to jones and white :

"job-notify-method"
'tcp/ip-sockets', 'mailto'

"job-notify-events"
{ 'job-aborted', 'job-canceled' }, {'job-complete' }

"job-notify-addresses"
{ 'smith' }, { 'jones' , 'white' }

"job-notify-natural-language"
'en', 'fr'
-- can't leave out values
A system administrator could define the following default value for the corresopnding "job-notify" default parallel attributes:

"job-notify-method-default"
'mailto'

"job-notify-events-default"
'job-completed'

"job-notify-natural-language-default"
'en'

A system administrator could define the following sets of parallel values for the corresponding "job-notify" supported parallel attributes:

"job-notify-method-supported"
{ 'mailto' }, { 'sense', 'tcp/ip-socket' }

"job-notify-events-supported"
{ 'job-completed', 'job-aborted',

'job-canceled' }, { 'job-received',

'job-started', 'job-completed',

'job-aborted', 'job-canceled' }

"job-notify-natural-language-supported
{ 'en', 'fr', 'en-us', 'de' }, { 'en' }
ISSUE 1: If a 1setOf 1setOf value is a single value, does the sender need to include the double nesting or not? It would be nice if our encoding would allow a single value, i.e.,:

"job-notify-method-supported"
'mailto', { 'sense', 'tcp/ip-socket' }

6 Encoding

In order to allow the 1setOf 1setOf to be represented as merely 1setOf when there is only one value in a set of parallel attributes, we need a begin and end indication of a set of values that are to be grouped together into a 1setOf 1setOf.

The simplest and most compatible way to add simple begin and end markers that can be ignored by existing parsers is to use an attribute to mean begin of a 1setOf 1setOf and another attribute to flag the end of a 1setOf 1SetOf value. Since the begin and end flags don't need any values, it is simplest to add a single out-of-band value, say, 'value-marker' and then introduce two new attributes that use it: "begin-set-of-set" and "end-set-of-set".
ISSUE 2: Ok to use the same "out-of-band" with different attributes?
7 Rejected alternatives for a 'dictionary'

This section lists the alternatives we considered for adding a new attribute syntax to represent a dictionary value.

1. No maximum length for the new attribute syntax: 'dictionary'. If an IPP object supports dictionary it has to read a piece at a time. If it doesn't it has to be able to ignore an arbitrarily long data value. See the encoding example in the next section.
Reason for rejection: Not completely compatible with current parsers that have a fixed butter size for entities of around 1023 octets, the current IPP data type maximum.
2. Pick a maximum length, say 2047 but have no way to get more. See the same encoding example in the next section.
Reason for rejection: Might prove to be too small for some usages.

3. Have a 2047 octet max length, continueDictionary as a second attribute syntax and endDictionary so that dictionaries can nest.

Reason for rejection: More complexity.

4. Have a 2047 octet max length but allow repeated instances of an attribute to append additional dictionary values.

Reason for rejection: Not the current procedure for duplicate attributes.

5. Add a new group tag to represent a dictionary value somehow. Groups do NOT have lengths and existing parsers are supposed to ignore group tags they don't understand.

Reason for rejection: Not completely compatible with existing parsers.

6. Add an out-of-band value that indicates that this attribute was the beginning of a dictionary and add an attribute that marked the end of the dictionary value.
Reason for rejection: Not completely compatible with existing parsers. Existing parser would try to interpret the contents of the dictionary as regular attributes.
7. Add attribute naming syntax to have a name space pre-pended and an index embedded. For example: job-notify:0:events would hold the first set of events that the requester specified and job-notify:1:events would hold the second set.
Reason for rejection: Changing the naming more of a change than is necessary with the current 1setOf 1setOf proposal, which does not change the naming and does not add an attribute syntax.
8. Add a numeric instance number to the end of paraller attributes, i.e., "job-notify-method-supported-1".
Reason for rejection: Not needed to be able to address a particular instance of a parallel attribute value.
7.1 Rejected encoding example as a new 'dictionary' attribute syntax

This section shows the complexity of the encoding for the rejected alternative of representing a dictionary as a new attribute syntax. The following example is written in the style of the IPP/1.0 "Encoding and Transport" (nee "Protocol") document.

9.2 Print-Job Request with ("attributes-charset", "attributes-natural-language", and "job-name" operation attribute and) an "addresses" dictionary job attribute, including two address dictionary values and two phone numbers in the first address dictionary value.

Octets
Symbolic Value
Protocol field
comments

0x0100
1.0
version-number

0x0002
Print-Job
operation

0x00000001
1
request-id

0x01
start operation-attributes
operation-attributes-tag

0x47
charset type
value-tag

0x0012

name-length

attributes-charset
attributes-charset
name
charset

0x0008

value-length

US-ASCII
US-ASCII
value

0x48
natural-language type
value-tag

0x001B

name-length

attributes-natural-language
attributes-natural-language
name
natural-language

0x0005

value-length

en-US
en-US
value

0x42
name type
value-tag
"job-name" attribute

0x0008

name-length

job-name
job-name
name

0x0006

value-length

foobar
foobar
value

0x02
start job-attributes
job-attributes-tag

0x34
dictionary type
value-tag
"addresses" attribute

0x0009

name-length

addresses
addresses
name

0x009c

value-length
156 octets in 1st dict value

0x41
text type
value-tag
"addresses-name" attribute

0x000e

name-length

addressee-name
addressee-name
name

0x0009

value-length

Tom Jones
Tom Jones
value

0x41
text type
value-tag
"street-address" attribute

0x000e

name-length

street-address
street-address
name

0x000c

value-length

100 Main St.
100 Main St.
value

0x41
text type
value-tag
"city-or-town" attribute

0x000c

name-length

city-or-town
city-or-town
name

0x0008

value-length

New York
New York
value

0x41
text type
value-tag
"state" attribute

0x0005

name-length

state
state
name

0x0002

value-length

NY
NY
value

0x41
text type
value-tag
"postal-zone" attribute

0x000b

name-length

postal-zone
postal-zone
name

0x0005

value-length

10200
10200
value

0x41
text type
value-tag
"phone-numbers" attribute

0x000d

name-length

phone-numbers
phone-numbers
name

0x08

value-length

312-1234
312-1234
value

0x41
text type
value-tag
start of 2nd phone-numbers value

0x0000

name-length
0 length means next multiple value

0x0008

value-length

372-8432
372-8432
value
end of 1st dictionary value

0x34
dictionary-type
value-tag
start of 2nd dictionary value

0x0000

name-length
0 length mean next multiple value

0xnnnn
0xnnnn
value-length
nnnn octets in 2nd dict value

0x41
text type
value-tag
"addresses-name" attribute

0x000e

name-length

addressee-name
addressee-name
name

0x000a

value-length

Bill Smith
Bill Smith
value

...

nnnn octets of the next dict value

0x03
end-of-attributes
end-of-attributes-tag

%!PS...
<PostScript>
data
data

14

