INTERNET-DRAFT

HTTP 1.1 Transport Mapping for the Internet Printing Protocol

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

To view the entire list of current Internet-Drafts, please check the "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net(Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

This document describes a method to encapsulate the abstract Internet Printing Protocol (IPP) Model using the Hypertext Transfer Protocol (HTTP) Version 1.1, as described in RFC 2068 [see bib]. Abstract IPP operations and responses are mapped to specific HTTP methods and responses. Where appropriate, HTTP response codes and message headers are used to convey abstract IPP model semantics. Within the context of IPP, HTTP is primarily used as a pure transport, carrying entire IPP protocol data units (PDUs) as "payload" within HTTP messages.

1. IPP Model Overview

The IPP Model document[see bib] describes protocol operations and responses that are designed to fulfill the requirements set forth in the IPP Requirements Specification [see bib]. IPP operations are designed to operate on IPP "objects". There are two such objects defined by the IPP model: PRINTER objects and JOB objects. IPP objects are referenced by their Uniform Resource Identifier, or URI [see bib]. For each type of IPP object (PRINTER or JOB), one or more IPP operations defined. Also, for each type of IPP object, a set of attributes exist that detail object-specific characteristics or properties of that object. Individual IPP operations can be supplemented by object attribute specifications that are used to refine a particular operations' effect on a object.

2. HTTP 1.1 Mapping Strategy

IPP operations and responses can be mapped directly to HTTP methods and responses. The IPP Model Document (see bib) defines the following protocol operations:

PrintJob - Print the enclosed job, with attributes

CreateJob - Create an instance of a JOB object

SendDocument - Append enclosed print data to JOB object

Modify - Modify the state of a PRINTER or JOB object

Validate - Validate attributes for a specific object

GetJobs - Return job queue information for PRINTER object

GetAttributes - Return attribute information for object

For simplicity, all IPP operations are encapsulated within the HTTP POST method. Each POST request and each POST response message contain message bodies that are tagged with a "Content-Type" of "application/ipp". The format of the application/ipp content-type is defined in section 3 of this document. Briefly, the application/ipp entity contains a complete IPP protocol data unit (PDU), containing all IPP-specific encodings that make up a request or response. In this sense, HTTP is being utilized as a pure transport, merely conveying IPP PDUs between IPP clients and IPP servers.

Encoding of application/ipp Entities

This section defines the encoding for an IPP protocol data unit.

All length fields shall be represented by binary integers in Big Endian order. The length shall apply only to the referenced field, and it shall not include the length bytes themselves.

Each name and each value in the header shall be a sequence of Unicode characters encoded in UTF-8. A name shall be restricted to the ASCII subset of characters. There shall be no padding octets in the protocol. The syntax rules are those specified in RFC 2068 except that some specified “characters” represent binary values. The encoding is a binary encoding with text used for names and values of attributes. As such, spaces, tabs and CRLF play no special roles in delimiting syntactical entities.

The following is the syntax for specifying the encoding of an IPP operation.

operation-encoding = operation-version transaction-id operation-attributes operation-data

operation-version = operation-major-version operation-minor-version

operation-major-version = one-byte-integer ; major version in binary, initially 1

operation-minor-version = one-byte-integer ; minor version in binary, initially 0

transaction-id = 4-byte unsigned integer value

operation-attributes = attribute-length *attribute

attribute-length = four-byte-integer ; number of octets of the attributes in binary

attribute = name-length name value-length value

name-length = two-byte-integer ; number of octets of the name

name = octet-string

value-length = two-byte-integer ; number of octets of the attribute value

value = octet-string

operation-data = octet-string

An attribute whose value is a set of n values shall be represented as a sequence n attributes, where all but the first attribute have a name of zero length.

The first attribute in a request shall be named “operation” and its value is the name of the operation.

The first attribute in a response shall be named “status” and its value a text representation of an integer.

The second attribute in a response shall named “reason-phrase” and its value shall be a message which describes the status.

A Printer shall understand all attribute names and values specified in the operation-header of a PrintJob, CreateJob or SendDocument request; otherwise the Printer shall reject the job and specify the failure in the response. If a request contains attribute names that the Printer doesn’t understand, those names shall be the values of the response attribute "unsupported-attributes".

ISSUE: this strict rule seems contrary to where we originally started, but it is consistent with the client getting all attributes correct for submitting a job and having a conversation with the client until it gets the attributes correct. In a response, a client may receive attribute names and values which it does not understand.

ISSUE: how does a client translate a keyword into a localized phrase?

BIG-ISSUE: Would the working group consider removing Print-B
y-Reference capa
bility
from version 1.0 of IPP? The decision to support prin
t-by-reference has major implications on our application/ipp PDU format.

3.1 PrintJob Request

A PrintJob Request allows a user to submit a job with attributes and exactly one document. It consists of an operation whose components are:

part of operation	description

--------------------	------------------------------

first attribute of header name: “operation”, value:

	“PrintJob”

rest of header	zero or more Job Template

	attributes

operation data	all of the document data

ISSUE: Just a note, the Microsoft Word tables included in the following descriptions must be converted into standard ASCII text prior to IETF I-D submission. As an example, the PrintJob operation table above was converted to text using the Microsoft "Convert Table to Text" utility. Is this form readable, if not we can change it.

ISSUE: The status codes that can be returned by each protocol operation should be listed in the "response" section of each operation.

3.1.1 PrintJob Response

A PrintJob Request returns a PrintJob Response. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: “status”, value: integer as text��second attribute of header�name: “reason-phrase”, value: a message which describes the status��third attribute of header�name: “job-URI”, value: the job’s URI��rest of header�zero or more other Job Description or Error attributes��operation data�none��

Error attributes include: "unsupported-attributes" and "unsupported-values".

CreateJob Request

A CreateJob Request allows a user to submit a job with attributes only and then send the document later in a series of SendDocument requests. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: "operation", value: "CreateJob"��second attribute of header�name: "number-of-documents", value: integer as text

OPTIONAL��rest of header�zero or more Job Template attributes��

ISSUE: is the number of documents determined explicitly at the beginning in CreateJob, or does each SendDocument have an attribute that specifies the last document. Furthermore, what does a server do when it hasn’t received the last job data or when it rejects a SendDocument after accepting a CreateJob?

CreateJob Response

A CreateJob Request returns a CreateJob Response. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: "status", value: integer as text��second attribute of header�name: "reason-phrase", value: a message which describes the status��third attribute of header�name: "job-URI", value: the job’s URI��rest of header�zero or more other Job Description or Error attributes��operation data�none��

SendDocument Request

A SendDocument Request allows a user to send job data along with attributes that pertain to just that document. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: "operation", value: "SendDocument"��rest of header�zero or more Job Template attributes��operation data�all of the document data for one document ��

SendDocument Response

A SendDocument Request returns a SendDocument Response. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: "status", value: integer as text��second attribute of header�name: "reason-phrase", value: a message which describes the status��rest of header�zero or more other Job Description or Error attributes��operation data�none��

ISSUE: do we really want the Job Description attributes returned with each response.

Validate Request

A Validate Request allows a user to send job attributes to the Printer to determine if such a job would print if submitted. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: "operation", value: "Validate"��rest of header�zero or more Job Template attributes��operation data�none��

Validate Response

A Validate Request returns a Validate Response. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: “status”, value: integer as text��second attribute of header�name: “reason-phrase”, value: a message which describes the status��rest of header�zero or more Error attributes��operation data�none��

Modify Request

A Modify Request allows a user to modify the state of an IPP object. Currently, only JOB objects are supported as targets of a Modify request. Furthermore, only a Modify type of "Cancel" is supported in the initial version of IPP. The Modify request consists of an operation whose components are:

part of operation�description��first attribute of header�name: “operation”, value: “Modify”��Modify type�name: "modify-type" value: "Cancel"��rest of header�optional, name: “message”, value: text message��operation data�none��

Modify Response

A Modify Request returns a Modify Response. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: “status”, value: integer as text��second attribute of header�name: “reason-phrase”, value: a message which describes the status��rest of header�optional attributes, none specified or required��operation data�none��

GetAttributes Request

A GetAttributes Request allows a user to obtain the value of specified attributes for a particular object. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: “operation”, value: “GetAttributes”��second attribute�optional, name “document-format”, value: a document format��third attribute�optional, name “requested-attributes”, value a set of attribute names��operation data�none��

GetAttributes Response

A GetAttributes Request returns a GetAttributes Response. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: “status”, value: integer as text��second attribute of header�name: “reason-phrase”, value: a message which describes the status��rest of header�zero or more requested attributes��

If the Printer receives a request for an attribute that the Printer doesn’t understand, it shall return a value of "unsupported" for that attribute.

GetJobs Request

A GetJobs Request allows a user to obtain the value of specified attributes of jobs in the queue. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: “operation”, value: “GetJobs”��second attribute of header�optional, name: “job-owner”, value: name of a user��third attribute of header�optional, name: “job-states”, value: names of job state��fourth attribute of header�optional, name “requested-attributes”, value a set of attribute names��

ISSUE: should this operation get the printer attributes too? It saves an operation, but complicates the response. This is currently in the model, but we have talked about removing it.

GetJobs Response

A GetJobs Request returns a GetJobs Response. It consists of an operation whose components are:

part of operation�description��first attribute of header�name: “status”, value: integer as text��second attribute of header�name: “reason-phrase”, value: a message which describes the status��third attribute of header�name: “job-number”, value: integer as text��more of header�zero or more job attributes for job-number 1��next attribute of header�name: “job-number”, value: integer as text��more of header�zero or more job attributes for job-number 2��more of header�more of the same for remaining jobs��

Each job shall begin with the attribute "job-number".

If the Printer receives a request for an attribute that the Printer doesn’t understand, it shall return a value of "unsupported" for that attribute.

ISSUE: Since this is a stream protocol, do we want to have all jobs come in one operation and allow the client to stop the flow by closing the connection, or do we want the server to send a reasonable number with a cookie for the client to get more?

POSSIBLE-
ISSUE-ANSWER (Randy) I believe the way to do this is to remove the returned attributes from the GetJobs response and just return the job URI values. Let the end-user or software component subsequently call GetAttributes on a specific URI. We could really be generating a lot of traffic if we attempt to deliver a bunch of attributes to very print job that might be queued at a busy printer.

HTTP 1.1 General Headers

Many of the headers specified by RFC 2068 do not have to be supported by general purpose HTTP clients and servers. The following text clarifies what IPP clients and servers should consider and the HTTP 1.1 conformance issues for each.

4.1 Cache-Control

IPP servers and clients will have to operate within a caching proxy environment. In order to ensure a pure client and server environment between IPP clients and servers, caching of IPP requests and responses must be prohibited. The "Cache-Control:" general header MUST be included in all IPP requests and responses. The value for the "Cache-Control:" header directive would be "no-cache". Also, to make sure there are no HTTP 1.0 caching proxies between HTTP 1.1 clients and servers, IPP clients and servers MUST also include the "Pragma:" general header, also specifying "no-cache" as the value.

It is conceivable that there would be some value in caching of attribute requests to IPP printer objects, since in a large environment, these requests might be very frequent. The IPP working group may want to consider the value in caching certain IPP object attribute requests. If caching of certain IPP response data is allowed, then we should also consider the use of the "no-transform" value for the "Cache-Control" directive.

Connection

The "Connection:" general header SHOULD be used by IPP servers or IPP clients to instruct either a remote client or server that the HTTP connection be closed. For an IPP server that accepts CreateJob/SendDocument sequences for job submission, the last SendDocument (POST) operation required to deliver the job data could include the "Connection:" header with the value "close" to instruct the server that the connection will be closed after reception of this request.

Content-Coding

The "Content-Coding:" entity header field specifies how the entity body of a particular message is to be decoded. For HTTP, this is typically a compression encoding so the field would be "gzip" or "compressed". If the IPP working group wants to define a base set of content-codings, then the values for these codings would be specified in IPP messages via the "Content-Coding:" header.

Content-Language:

Like the "Content-Coding:" header, this header also specifies information related to the enclosed entity. The "Content-Coding:" header describes the natural language in which the entity body has been encoded. IPP servers should only return entities in languages that have been "agreed" upon by a particular client in a previously received "Accept-Language:" request header.

Content-Length

The "Content-Length:" header specifies the size of a message body. IPP clients and servers will use the same algorithm as general-purpose HTTP 1.1 servers for determining the length of IPP messages. From RFC 2068, the description of the Content-Length header:

Applications SHOULD use this field to indicate the size of the message-body to be transferred, regardless of the media type of the entity. It must be possible for the recipient to reliably determine the end of HTTP/1.1 requests containing an entity-body, e.g., because the request has a valid Content-Length field, uses Transfer-Encoding: chunked or a multipart body.

Content-Type

The Content-Type header would be used by IPP clients and servers to specify IPP-specific entities. The Content-Type value MUST be “application/ipp”. IPP clients and servers MAY also supply a Content-Type modifier “charset”, as part of the applicaion/ipp Content-Type. The “charset” modifier would specify the character set used within the application/ipp entity body.

Date

The “Date:” header field is currently specified in the HTTP 1.1 document as a MUST header by all compliant implementations. The date format used as the value of this header must be in RFC 1123 format. There is a recent internet draft that has been published that attempts to describe how some embedded, lightweight HTTP server implementations can still be “compliant” even if they don’t contain any realtime clock or time capabilities.

Pragma

The “Pragma:” directive would only be used by IPP implementations for backwards compatibility with HTTP 1.0 caching proxies. The Pragma header would specify the value “no-cache”, which is understood by HTTP 1.0 proxies to have the same semantics as the HTTP 1.1 “Cache-Control” directive with the value “no-cache”.

4.8 Transfer-Encoding:

For HTTP 1.1, the only “Transfer-Encoding” specified is the “chunked” encoding. Since an HTTP connection is “8-bit clean”, the traditional rationale for transfer-encodings (like used in MIME) are unneeded. But when IPP implementations are attempting to send messages for which the total length of the message cannot be determined, then the message should be transferred as "chunked" or via a multipart message with message boundaries. The current HTTP specification requires that all HTTP 1.1 applications MUST be able to receive and decode the chunked transfer encoding.

HTTP 1.1 Request Headers

Accept

The Accept: header is used to specify certain media types that a client is willing accept as a result of a request to a server. IPP clients SHOULD always specify (at a minimum) application/ipp, text/html, and text/plain.

Accept-Charset

This header indicates to servers what character sets a client is willing to accept in a response. According to the HTTP 1.1 specification, all clients should be able to support ISO-8859-1.

Accept-Encoding

Similar to "Accept:", the Accept-Encoding header is sent from client to server to inform the server what types of encoding of responses that the client can handle.

Accept-Language

IPP clients SHOULD send Accept-Language headers in IPP requests to notify IPP servers what type of localization is acceptable to the client.

Authorization

IPP servers may protect certain types of IPP objects via HTTP basic authentication. If an IPP client has knowledge that a requested resource requires basic authentication, then an appropriate "Authorization:" request header should be included in all IPP requests to the IPP object (URI) in question. The client can also dynamically learn of the authentication requirements for a particular object if the client attempts to access the object without an authentication header. IPP servers that receive un-authenticated requests for IPP objects that require basic authentication would return a status code of 401, which indicates to clients that authentication is required for accessing the requested object.

It is assumed that, for the lifetime of a particular IPP object (URI), that the user's credentials (once successfully validated) will be valid. Therefore, on the first successful authenticated response to a request, IPP clients can cache the user's credentials and reuse these credentials on subsequent requests to the server for this object. Each subsequent request for the IPP object (URI) would include an "Authorization:" header specifying the cached credentials.

From

The "From:" header contains the internet e-mail address for the human individual that is responsible for the request being generated. The IPP working group has talked about using the “From:” header as a means for some type of authentication or access protection. The current HTTP 1.1 specification states that the "From:" header “SHOULD NOT be used as an insecure method of access protection”. The specification goes on to say that “the interpretation of this field is that the request is being performed on behalf of the user specified by the "From:" header, who accepts responsibility for the operation being performed.”. The following paragraph from RFC 2068 is especially relevant:

Note: The client SHOULD not send the From header field without the user's approval, as it may conflict with the user's privacy interests or their site's security policy. It is strongly recommended that the user be able to disable, enable, and modify the value of this field at any time prior to a request.

Host

The "Host:" field typically comes on a separate line after the HTTP method specification. This field MUST be set by HTTP 1.1 clients with the network location of the specified URI in the method. All internet-based HTTP 1.1 servers MUST respond with a 400 status code to any HTTP 1.1 request message which lacks a "Host:" header. This header is used by newer WEB server sites for so-called "virtual host" access. IPP could utilize this field in some very interesting ways with regards to multiple logical printers serviced by a single IPP/HTTP server.

Proxy-Authorization

When there is an HTTP 1.1 caching proxy operating in between an IPP client and server, it is possible that certain resources identified by a site administrator might require basic authentication. If an IPP client receives a 407 response to a valid IPP request, the client should format an authorization request back to the requested resource (URI) using the "Proxy-Authorization:" request header. Section 11 of RFC 2068 discusses HTTP authorization in detail.

HTTP 1.1 Response Headers

Allow

The "Allow:" entity header field MUST be returned by IPP servers to notify IPP clients which HTTP methods are allowed to be executed on a particular URI (or IPP object). In the future, we may want to define conformance levels with respect to IPP, wherein some IPP servers implement all possible methods on IPP objects, and other lighter weight IPP servers are restricted in the domain of methods supported on IPP objects. The "Allow:" header permits interoperability between clients and servers of different capabilities. The client can adapt its behavior to the capabilities it learns from a particular server.

6.2 Content-Location

IPP servers SHOULD return a Content-Location header that specifies the URI of a job object created with the "CreateJob" operation. IPP clients MAY also use the Content-Location header to specify the target IPP object (URI) to which a particular IPP operation is to apply.

Location

The "Location:" header MAY be used by IPP servers to dynamically redirect IPP clients to other URIs that can be contacted for completing the client’s request. The Location header could be used as a replacement for the multiple-URL facility discussed in the early IPP-over-HTTP internet draft. IPP implementations would follow the direction set forth by the current HTTP 1.1 specification:

"for 201 (“Created”) responses, the “Location” is that of the new resource created by the request. For 3xx responses, the location SHOULD indicate the server’s preferred URL for automatic redirection to the resource."

The term "resource" used in the above paragraph would normally be a URI referencing an IPP job object.

Proxy-Authenticate

It is possible that, in the presence of caching HTTP 1.1 proxies, that IPP client implementations may have to deal with "Proxy-Authenticate" responses. The "Proxy-Authenticate" response header could be returned as part of a 407 (Proxy Authentication Required) response. (see also Proxy-Authorization request header). IPP clients SHOULD support proxy-authorization.

Public

The "Public:" response header SHOULD be used by IPP servers to inform IPP clients what types of HTTP methods are supported by the server. The "Public" response header would typically be used by very lightweight HTTP/IPP server implementations that implement a minimal IPP capability.

Retry-After

The “Retry-After” response header would be used in tandem with the 503 (Service Unavailable) response code to indicate how long the resource (or service) is to remain unavailable. This could be used by IPP servers to indicate how long a printing service might be unavailable to IPP clients.

WWW-Authenticate

The WWW-Authenticate response header is used to initiate basic HTTP authentication. If an IPP client receives a 401 (Unauthorized) response to an IPP request, then the response MAY contain a "WWW-Authenticate" header with an appropriate challenge. The next request for this resource formulated by the IPP client SHOULD contain an "Authorization" header specifying appropriate credentials.

Security Considerations

When utilizing HTTP 1.1 as a transport for IPP, all of the security considerations specified in RFC 2068 apply. In addition, the IPP adds some additional application-specific security considerations, including denial-of-service attacks, mutual authentication, and privacy. The IPP Model document addresses IPP-specific security considerations, while RFC 2068 addresses HTTP-related security considerations.

ISSUE: the security subgroup is free to add whatever is necessary to fill out the "security considerations" section of this document. However, the IPP model document should include the bulk of security discussions that are IPP-specific.

