Resource objects summary proposal

From Ira McDonald and Tom Hastings

11/27/00

File: resource-objects-summary-proposal-001127-rev.doc

This document is a summary proposal of the one that Ira McDonald and Tom Hastings prepared for the September 2000 PWG meeting that defined a general Resource object with a "resource-type" attribute for sub-typing and operations to query, create, and delete Resource object instances. See ftp://ftp.pwg.org/pub/pwg/ipp/new_RES/draft-ietf-ipp-get-resource-01.pdf. In order to compare the resource object approach more directly with Paul Moore's counter proposal, this document is shows revisions to Paul's proposal to make the Resource object proposal. Also non-essential differences, such as filtering have been made the same, so that only real differences remain.
Table of Contents

11
Introduction and Summary

22
Get-Resource-Attributes and Get-Resources operations

33
Operations to Add, Delete, or Modify Resource object instances

43.1
Create-Resource

43.2
Delete-Resource

43.3
Set-Resource-Attributes

53.4
Renew-Resource

54
Get-Resource-Data, Create-Resource operations

65
Observations

66
Suggested Resource attributes

77
Possible Resource types

78
Examples

78.1
Input-trays

78.2
Media descriptions

88.3
Images

1 Introduction and Summary

Use a polymorphic generic Resource object type with sub-typing to describe fonts, media, paper trays, downloaded JPEGs, ICC Color Profiles, macros, … Some of these resources can be down-loaded into the Printer, some can be installed by means outside the IPP protocol, and some can be properties or characteristics of the Printer as it comes from the vendor or is configured by the administrator when the Printer is installed. Some of these resources can have associated opaque binary data, such as font data, while others consist solely of attributes.

These Resource object attributes are retrieved using the (new) Get-Resource-Attributes and Get-Resources operations which are modeled on the IPP/1.1 Get-Job-Attributes and Get-Jobs operations and the Get-Subscription-Attributes and Get-Subscriptions operations. Resource objects that can be loaded are defined to have Resource Template attributes (just like Job and Subscription objects), so that there are "xxx" Resource attributes and "xxx-supported" Printer attributes.

The following new operations are defined for use with Resource objects:

· Get-Resource-Attributes - returns the requested attributes of the identified Resource object instance.

· Get-Resources - return the requested attributes of the Resource object instances based on a simple filter supplied by the client

· Create-Resource - add a Resource object instance to a Printer

· Delete-Resource - delete a Resource object instance from the Printer

· (new) Set-Resource-Attributes - modify a Resource object instance of a Printer

· Get-Resource-Data - same as Get-Resource-Attributes, and in addition get the object instance's associated opaque data.

· Create-Resource - same operation sets the object instance's associated opaque data.

· Renew-Resource - update the lease time for the Resource object instance for those Resource types that have leases.

For consistency all seven operations have an Operation Attributes Group and a Resource Attributes Group in each request and response. The response always includes the requested Resource object attributes. In addition to the usual request operation attributes for a Printer operation, all six operations MUST include:

"resource-type" (type2 keyword) - which indicates the type of Resource, e.g., 'media', 'font', 'image', 'input-tray', 'output-bin', etc.

Either "resource-name" (name(127)) or "resource-id" (integer(1:MAX)) - identifies the resource object instance. The Printer MUST support both.

2 Get-Resource-Attributes and Get-Resources operations

The Get-Resource-Attributes and Get-Resources operations for Resource objects follow the pattern established by the IPP/1.1 Get-Job-Attributes and Get-Jobs operations for Job objects and the Get-Subscription-Attributes and Get-Subscriptions operations for Subscription objects. The Get-Resource-Attributes operation retrieves requested attributes from one Resource object instance specified by the Key Attribute supplied by the client.

The Get-Resources operation retrieves requested attributes from one or more Resource object instances. The Resource objects instances are selected on the basic of a filter specified in the operation. Only one Filter Attribute is permitted and it is expressed as the only attribute in the Resource Attributes group. The Printer matches the Filter Attribute against all the attributes of all of the Resource object instances. The attribute name, syntax, and value of the Filter Attribute MUST be the same as one of the attributes in the Resource object instance, in order to match. A value match occurs if all of the values of the Filter Attribute are a subset of the Resource object attribute.

The client MUST also supply the Filter Attribute as the only attribute in a separate Resource Attributes group. For example:

 "font-point-size" = '12'

The Printer returns the requested attributes of all Resource object instances that match the Filter Attribute. Each row is returned in a separate Resource Attributes group in the response (like Get-Jobs response). If no rows match then the status code 'client-error-not-found' error is returned. ISSUE: Or should the status code be 'successful-ok' (0), with an empty Resource Attributes group returned to be more like Get-Printer-Attributes?
When a Resource object type is defined, the definition SHOULD specify an ‘identifying attribute’, called the Key Attribute that uniquely identifies an object instance. No two Resource object instances of the same type can have the same Key Attribute value. The role of the Key Attribute is the same as a primary key in a data base. The Key Attribute facilitates direct indexing into Resource object instances. Possible examples could be tray name, media name, font name, etc. In some cases the identifying member attribute could be a printer generated unique ID.

If a Resource object type definition does not indicate which member attribute is the Key Attribute, that Resource object type MAY still be used in the Get-Resources operation, but there is no way for the client to unambiguously request a single object instance.

3 Operations to Add, Delete, or Modify Resource object instances

The operations defined in this section add, delete, or modify a Resource object instance for object types that is defined to have a Key Attribute.

These operations do not work on all Resource types– there are some Resource types that represent state or non-logical capabilities of the device (paper loaded, input trays, etc.). In this case these Resource instances are read-only (either by definition or in a particular implementation).

There also can exist Resource object attributes that represent objects that are software modifiable entities but that are still not updated via these operations in an implementation. For example fonts could be loaded by a specific set of font management operations, rather than these operations.

What this means is that the Resource object querying can be used on all entities that are represented as Resource objects but there can be many mechanisms that create those instances. The definition of the Resource object type MUST indicate how the rows are created, modified, and removed.

3.1 Create-Resource

This operation adds a Resource object instance provided that the Resource object type definition defined a Key Attribute.

In addition to the "resource-type" and either "resource-name" or "resource-id" operation attributes, the client MUST supply the Key Attribute as the first attribute in the Resource Attributes group in the request. For example, "font-name" = 'TimesRomanItalic'. The client supplies the remaining attributes for the object instance as the remaining attributes in the Resource Attributes group. For example, "font-size" = '12', "font-style" = 'italic', etc.

If the object instance already exists, the Printer MUST reject the request and return the (new) 'client-error-row-already-exists'.

If the "resource-type" does not specify a Resource type whose definition includes a Key Attribute or the first attribute in the Resource Attributes group is not the Key Attribute defined for the Resource type, the Printer MUST reject the request with the 'client-error-bad-request'.

3.2 Delete-Resource

This operation deletes a Resource object instance provided that the Resource object type definition defined a Key Attribute.

In addition to the "resource-type" and either "resource-name" or "resource-id" operation attributes, the client MUST supply the Key Attribute as the only attribute in the Resource Attributes group in the request. For example, "font-name" = 'TimesRoman'.

If the object instance does not exist, the Printer MUST reject the request and return the 'client-error-not-found' error status code.

If the "resource-type" does not specify a Resource type whose definition includes a Key Attribute or the only attribute in the Resource Attributes group is not the Key Attribute defined for the Resource type, the Printer MUST reject the request with the 'client-error-bad-request'.

3.3 Set-Resource-Attributes

This operation modifies an existing Resource object instance provided that the Resource object type definition defined a Key Attribute.

In addition to the "resource-type" and either "resource-name" or "resource-id" operation attributes, the client MUST supply the Key Attribute as the first attribute in the Resource Attributes group in the request. For example, "font-name" = 'TimesRomanItalic'. The client supplies the remaining attributes to be modified for the row as the remaining attributes in the Resource Attributes group. For example, "font-size" = '12', "font-style" = 'italic', etc. Any Resource attributes of the object instance that the client omits are unchanged.

If the object instance does not exist, the Printer MUST reject the request and return the 'client-error-not-found' error status code.

If the "resource-type" does not specify a Resource type whose definition includes a Key Attribute or the first attribute in the Resource Attributes groups is not the Key Attribute defined for the Resource type, the Printer MUST reject the request with the 'client-error-bad-request'.

3.4 Renew-Resource

This operation renews the lease for the specified Resource object instance provided that the Resource object type definition defined a Key Attribute.

In addition to the "resource-type" and either "resource-name" or "resource-id" operation attributes, the client MUST supply the Key Attribute as the first attribute in the Resource Attributes group in the request. For example, "font-name" = 'TimesRomanItalic'. The client supplies the "xxx-lease-duration" attributes as the remaining attribute in the Resource Attributes group. For example, "font-lease-duration" = nnn.

If the object instance does not exist, the Printer MUST reject the request and return the 'client-error-not-found' error status code.

If the "resource-type" does not specify a Resource type whose definition includes a Key Attribute or the first attribute in the Resource Attributes groups is not the Key Attribute defined for the Resource type or the Resource type definition does not include an "xxx-lease-duration" attribute, the Printer MUST reject the request with the 'client-error-bad-request'.

4 Get-Resource-Data, Create-Resource operations

Some Resource types may have data associated with each instance. In this case then one choice available to the designer of the Resource type is to use the Get-Resource-Data and Create-Resource operations to read and write opaque blobs (as well as the Resource object attributes).

For the Get-Resource-Data, the client supplies the "resource-type" and the Key Attribute as in the other Resource operations. The requested Resource object attributes are returned in the Resource Attributes Group, followed by the data as a data stream in the response (packaged the same way the print-job’s data is following the 'end-of-attributes-tag').

The data is sent in the same way using the Create-Resource operation.

Note that for some Resource types it might be possible to read the data but not write it (uploading font metrics from ROM for example). Also it might be possible to write it but not read it (macros are not intended to be used outside the printer so there is not point in providing read capabilities).

Alternative design #1. Resource types that have associated data have explicit object creation operations (Load-Font operation for example) but the data is read by HTTP get or IPP Get-Resources and Get-Resource-Attributes operations. This alternative overcomes the non-atomic nature of adding a row then uploading the data.

5 Observations

Some Resource types may have read-only object instances and read-write object instances (fonts supported may include ROM fonts and soft fonts).

Jobs and Subscriptions could have been done using Resource objects of type 'job' and 'subscription', but we already have operations defined for Jobs and Subscription objects.

Driver down loading could have been done usingResource objects of type 'driver', but we have a specification that uses Get-Printer-Attributes and a new Get-Client-Print-Support-Files operation.

Expiration times for Resource types can be specified in the Resource type definition if that is what the Resource type needs. For example, if users are allowed to down load images into the Printer for a period of time.

This mechanism is only defining a standardized ways of viewing structured data – it does not imply that common mechanisms must be used by implementations.

6 Suggested Resource attributes

In order to get some consistency in definition of Resource types, the following attribute names and attribute syntaxes are suggested if the attribute is appropriate for the resource type. However, none of these attributes are REQUIRED for a definition.

For key attributes that a client can supply (but cannot modify):

xxx-name (name(127)) or xxx-key (name(127) | type3 keyword) - Key Attribute

For attributes that a client can supply (or modify):

xxx-info (text(127)) - general information

xxx-create-date-time (dateTime) - the date and time that the resource was originally created, not added to the Printer.

xxx-lease-duration (integer(0:MAX)) - lease duration in seconds, 0 is infinite

xxx-data-uri (1setOf uri) - uri of the data when supplied by the client

xxx-data-k-octets (integer(0:MAX)) - size of the data

xxx-data-compression (type3 keyword) - data compression

For READ-ONLY attributes populated by the Printer:

xxx-id (integer(1:MAX)) - integer id for those resources that do not have a natural name supplied by the client.

xxx-create-user-name (name(MAX)) - user name who added the resource to the Printer

xxx-create-time (integer(MIN:MAX)) - the "printer-up-time" when the resource was added to the Printer. A 0 or negative value means before this Printer power-up (see RFC 2911 section 4.3.14).

xxx-expiration-time (integer(0:MAX)) - the "printer-up-time" when the lease expires

xxx-data-uri (1setOf uri) - uri of the data when supplied by the Printer

7 Possible Resource types

	Collection
	Key Attribute
	Members
	Data

	Input trays
	name
	Loaded media, state, capacity, level
	none

	Output bins
	name
	State, capacity, level
	none

	Fonts supported
	Name (face-size-style)
	Size, style, format
	Font metrics

	Media-descriptions
	name
	Size, weight,
	none

	Macros
	name
	Date, format
	Macro data

	Images
	name
	Date, format, description
	Image data

8 Examples

These are examples of how this proposal could be used to represent various items. The full variety of choices is used. These are not intended as actual proposals for their respective collections, but rather just indicate how the mechanism proposed in this paper would work.

8.1 Input-trays

The "input-tray-rows-supported" (1setOf collection) Printer attribute contains one row for each input tray supported by the printer.

The rows are identified by an "input-tray-name" (type3 keyword | name(MAX)) Key Attribute whose value is either defined by the PWG or is defined by the implementation. The values of the "input-tray-name" member attribute may be submitted in a Job Creation operation as the value of a (new) "input-tray" Job Template attribute.

The member attributes include "input-tray-max-capacity", "input-tray-current-level", "input-tray-status", and "input-tray-media-name" with semantics taken from the Printer MIB.

The rows of this collection are read using the Get-Printer-Collection-Rows operation. Rows are not created or deleted, though in some implementations, certain member attributes, such as "input-tray-media-name" can be set.

8.2 Media descriptions

The "media-rows-supported" (1setOf collection) Printer attribute contains one row for each supported / known media. See the PWG Production Printing Extension spec for the definition of the member attributes. The "media-col" (collection) Job Template attribute can be supplied by the client in Job Creation operations.

The rows are identified by a "media-key" (type3 keyword | name(MAX)) Key Attribute whose value is either defined by the PWG or is defined by the administrator. The values of the "media-key" member attribute may be submitted in a Job Creation operation as the value of the IPP/1.1 "media" Job Template attribute.

The member attributes include "media-size" (1setOf collection) {x-dimension, y-dimension", "media-weight", "media-color", etc.

The rows of this collection are read using Get-Printer-Collection-Rows. Rows are created using the Add-Printer-Collection-Row operation and deleted using the Delete-Printer-Collection-Row operation.

8.3 Images

The "image-rows-supported" (1setOf collection) Printer attribute contains one row for each supported / known.

The rows are identified by an "image-name" (name(MAX)) Key Attribute whose value is either defined by its creator. The values of the "image-name" member attribute may be submitted in a Job Creation operation as the value of the (new) "image" Job Template attribute.

Member attributes include "image-size", "image-format", "image-version", etc. The images are created by a (new) image-specific operation: Load-Image. This operation includes all the member attributes that describe the image plus the image data as an attached ‘print-job’ data stream. Some member attributes are derived from the image (size for example).

The Set-Printer-Collection-Row-Data operation is not used. Instead, a (new) Load-Image operation is defined and the client may specify an expiration time for the image.

Images may be explicitly deleted using the Delete-Printer-Collection-Row operation. The Add-Printer-Collection-Row and Modify-Printer-Collection-Row operations are not defined for use with images.

The image data is not readable externally.

PAGE
1

