SECURE INTERNET-BASED PRINTING

Abstract

IPP makes use of well-known cryptographic techniques to ensure that content data and job attributes are not tampered with during network transmission, i.e., confidentiality and integrity are preserved. The paper describes proper protocols to ensure that confidentiality and integrity are preserved and they are used to prevent the replay of captured byte stream.

Basic Protocols (Protocols with Flaws)

Confidentiality Preserving Protocol (Protocol 1)

Standard public-key (RSA), and symmetric-key (IDEA, DES) algorithms could be used to job information before sending it over the wire. We assume that printers have a hardware device or are equipped with software modules that use the above cryptographic algorithms. The basic steps of the protocol (that preserves confidentiality) are explained below:

The client encrypts the content data or job attributes using a symmetric key. The symmetric key is randomly chosen by the client. The symmetric key is then encrypted with the printer’s public key. �

The client sends this information to the printer over the network. Different job templates/content data are encrypted using different symmetric keys. This is to reduce the chances of a known plain-text attack.�

The printer decrypts the encrypted symmetric key with its private key, and uses symmetric key to decrypt the content data.�

The content data / job template that has job attributes is used to create a print job, and the job is printed.

Before step 1 takes place, the printer publishes its public key to the client. This could be done through a certification authority (CA), or through registered mail. This procedure is not explained here since there are standard ways to publish public keys.

Integrity Preserving Protocol (Protocol 2)

The basic protocol presented above has the obvious defect that a byte stream could be easily created, and the above cryptographic procedures performed on it between the client’s location and the printer’s location to print one’s own job. The revised protocol makes use of digital signature techniques to check for the message integrity before the job is printed. The revised protocol is shown below.

The client computes a hash of the job (let’s call it m) using a one-way hash function (e.g. MD5) and the hash is signed (encrypted) using the client’s private key. The signed hash (called the digital signature) is appended to the job contents. Let’s call this entire message (job contents + digital signature) M. This entire message M is encrypted using a symmetric key. The symmetric key is encrypted with the printer’s public key.�

The client sends this information to the printer over the network. As in the previous protocol, different jobs are encrypted using different symmetric keys. This is to reduce the chances of a known plain-text attack.�

The printer decrypts the encrypted symmetric key with its public key, and uses it to decrypt M. �

At the printer’s side the digital signature is decrypted using the client’s public key. A one-way hash is performed on m. This is compared with decrypted digital signature, and if they match, the job contents m is used to create a print job, and the job is printed.

As in the previous protocol, public keys of the printer and the client are exchanged before the job printing operation begins.

Enhanced Protocols

Capture-Replay Prevention Protocol (Protocol 3)

The above protocol (protocol #2) still has a flaw in it since the byte stream could be captured as it traverses across the network, and replayed as many times to print multiple jobs with the same data. This can be prevented by including a nonce and a time-stamp into the protocol stream. This is how it works:

The printer has a nonce counter that is synchronized with a synchronization job issued from the client at the beginning of a printing session. Every job issued for printing from the client has a nonce that should compare with the current count on the nonce counter. This relies on the transport protocol delivering packets in the order they were issued. Even though the nonce counter is capable of counting large number of jobs, there is a possibility for an intruder to insert a captured byte stream at a certain period in time when the counter is reset and that current nonce counter is equal to the nonce on the job. Also, an operator who knows how to reset the nonce counter could replay the captured byte stream. Hence a time-stamp is included so that captured byte streams cannot be replayed at a later point in time. The complete protocol with the nonce and time-stamp approach is shown below. The use of nonce or time-stamps is pretty common in authentication protocols. This protocol describes the message exchange between a single client and a printer. The protocol should be modified if several clients are printing on the printer. The modification is minor. Before the start of the protocol, the nonce should be generated by the printer and given to the client. �

 The client computes a hash of the job contents (let’s call the job contents m) using a one-way hash function (e.g. MD5) and the hash is signed (encrypted) using the client’s private key. The signed hash (called the digital signature) along with a nonce and the current time is appended to the job contents. Let’s call this entire message (job contents + nonce + time-stamp + digital signature) M. This entire message M is encrypted using a symmetric key. The symmetric key is encrypted with the printer’s public key.�

The client sends this information to the printer over the network. As in the previous protocol, different jobs are encrypted using different symmetric keys. This is to reduce the chances of a known plain-text attack.�

The printer decrypts the encrypted symmetric key with its public key, and uses it to decrypt M. This yields the constituents of M viz., job contents + nonce + time-stamp + digital signature. The nonce and time-stamp are checked before step 4 is performed.�

At the printer’s side the digital signature is decrypted using the client’s public key. A one-way hash is performed on m. This is compared with decrypted digital signature, and if they match, the job contents m is used to create a print job, and the job is printed.

	� PAGE �2�

