QOWOO~NOO UORWNPE

=

11

12
13

14

15
16

17
18

19
20

21
22

23
24

Subj: Pros and Cons of a separate jmlobStateTabl e
From Tom Hastings, Harry Lewis, and Ron Ber gman
Date: 5/14/97

File: sepstate.doc

The biggest issue remaining in the Job Monitoring MIB is the duplication of information in the
jmJobStateT able and the jmAttributeTable. Should we get rid of the duplication? And if so, do we
delete the jmJobStateT able or the duplicated attributes in the jmAttributeTable? A second issueis
whether the AssociatedV a ue object/attribute that provides a discriminant union of values based on the
job's state should be kept in either table. This paper isintended to further the discussion about this topic.

1. Summary of current overlap of jmJobStateTable and jmAttributeTable

The overlap between the jmJobStateT able and jmAttributeT able in the current MIB specification is
summarized by the following table:

Tablel

jmJobStateT able object corresponding Mand | static/dy | AssociatedVal
jmAttributeT able attribute atory? | namic? | ue state

jmJobState jobState(3) yes dynamic | -

jmJobStateK OctetsCompl eted jobK OctetsCompl eted(50) yes dynamic | -

jmJobStatel mpressionsCompleted | impressionsCompleted(55) yes dynamic | canceled

jmJobStateAssociatedValue jobStateA ssociatedV alue(4) yes dynamic | -
jobStartedBeingHeldTimeSta | no dynamic | held
mp(73)

numberOfinterveningJobs(9) | yes dynamic | pending

jobK OctetsRequested(48) yes static processing

impressionsRequested(54) yes static printing
[currentCopy(??) proposed] yes dynamic | printing

deviceAlertCode(10) yes dynamic | needsAttention

outputBinlndex(34) yes dynamic | completed

The jmJobStateT able isindexed by jmJobSetl ndex and jmJobl ndex.

The jmAttributeTable isindexed by jmJobSetindex, jmJoblndex, jmAttributeTypel ndex, and
jmAttributel nstancel ndex.

2. Summary of the Issues
The issues around the above objects/attributes are (in alogical order for consideration):

ISSUE 68 - Delete the Job State Group/Table all together, since all objects are also duplicated as
attributes in the jmAttributeT able?

Sub-issues to Issue 68 are:

25
26
27

28

29
30
31
32
33

34
35
36
37
38
39
40

41
42

43
44
45

46

47
48

49
50
51
52
53
54
55

56

57
58
59
60
61
62
63
64
65
66

67
68
69

ISSUE 68a: If we keep the jmJobStateT able, should we delete the attributes out of the
jmAttributeTable that already appear as objectsin the jmJobStateT able, namely jmJobState(3),
jobK OctetsCompleted(50), and impr essionsCompleted(55)?

ISSUE 68b: If we keep the jmJobStateT able, should we move the mandatory associated attributes (1)
out of the jmAttributeT able that the jmJobStateAssociatedValue object provides a convenient copy and
(2) into the jmJobStateT able as objects? Then thejmAttributeTable would contain only conditionally
mandatory attributes and the jmAttributeT able, itself, would change from Mandatory to Conditionally
Mandatory.

In other words, move number OfInter veningJobs(9), jobK OctetsRequested(48),

impr essionsRequested(54), [or the proposed currentCopy(??)], deviceAlertCode(10), and
outputBinlndex(34) into the jmJobStateT able as mandatory objects:

jmJobStateNumber Ofl nter veningJobs, jmJobStateK OctetsRequested,

jmJobStatel mpressionsRequested [or proposed jmJobStateCur rentCopy],
jmJobStateDeviceAlertCode, and jmJobStateOutputBinlndex. (Don't move the non-mandatory
jobStartedBeingHeldTimeStamp(73)).

ISSUE 69- Does order of assignment of JmAttributeTypeT C enums make any difference?

Would it help if the mandatory attributes were first, so that Get Next would pick them up first when
getting the next conceptual row? Does making the attribute table easier to navigate using Get Next help
with the decision to Issue 68 and 68b?

ISSUE 75 - Should the Attribute enum values be grouped so additions could be added in the appropriate
section

When producing the first Internet-Draft, | re-arranged the Attribute enumsinto logical groups, so that
attributes would be easier to find. We now have 78 attributes, so logical grouping is becoming important
to make the list more understandable. Several people had proposed adding attributes that were already
present in the spec. Also Harry has expressed the concern that any re-assignment of at least OIDs, causes
problems with tracking the drafts Finally, when the standard achieves proposed status, there will be
additional registrations. It might be helpful if the enums could be assigned to the appropriate group,
instead of only at the end.

The current logical grouping are:

Job State attributes

Job Identification attributes

Job Parameter attributes

Image Quality attributes (requested and used)
Job Progress attributes (requested and consumed)
Impression attributes (requested and consumed)
Page attributes (requested and consumed)

Sheet attributes (requested and consumed)
Resource attributes (requested and consumed)
Time attributes (set by server or device)

OK to assign Job State and Job Identification in steps of 30 and the rest in steps of 20?

ol
© o

O~NWwWwoONO N

See also Issue 69. We could put the mandatory attributes first, and then group the rest as above.

70
71
72

73
74
75
76

77
78

79
80
81
82
83

85
86

87

88
89
90
91

92

93
94

95
96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Issue 78 - Should the "multiplexor” (discriminant union?) jobStateAssociatedValue(4) attribute be
removed from the Job Attribute Table and the equivalent jmJobStateAssociatedValue object be removed
from the Job State table?

The associated values are also available as attributes in the attribute table. The application has to either
(2) request all 7 associated attributes or (2) first request the jobState(3) attribute and the request the 1
pertinent attribute. Since all 7 will easily fit in aPDU (minimum of 500 octets or so on al systems) and
each request takes about 20 octets, so you can get about 20 (5*4) attributes into a single PDU.

Issue 79 - Should the 'printing' state be combined into the 'processing’ state?

Many printers don't distinguish between 'processing' and 'printing’, especially desktop printers. For
those that do, having a state change that really reflects progress, such as the transition from processing to
printing, is better handled as a job state reason, not as a fundamental state change. Finally, since this
MIB isintended for non-printing services in the future, such as fax out, CD-ROM writing, fax-in,
scanning, etc., it would help if one of the states wasn't 'printing'. Even IPP, only has the state of
'processing’, with ajob-state-reason of 'job-printing' for those implementations that make the distinction
and want to go to the trouble of indicating the difference. PP even indicates that "most implementations
won't bother with this nuance’”.

ISSUE 68c: If we keep the jmJobStateAssociatedValue object, we could just change the attributes listed
in ISSUE 68b from mandatory to optional and keep them only in the jmAttributeTable. The
jmJobStateAssociatedValue object would remain in the jmJobStateT able to provide access to these
attributes mandatorally.

Issue 76 - So should jobName, jobOwner, and one of deviceNameRequested or queueNameRequested
be made Mandatory?

When we moved attributes from the job table to the attributes table (Issue 54 and 56), we didn't make any
of them mandatory for an agent to implement. Should any of them be made Mandatory?

The old job table had the following (mandatory) objectsin it:

jmJobName

jmJobldName

jmJobldNumber

jmJobServiceType

jmJobOwner

jmJobDeviceNameOr QueueRequested
jmJobCurrentState
jmJobStateReasons

1. jmJobldName and jmJobldNumber have been replaced by jmJobSubmissionl DIndex which is

Mandatory.

jmJobServiceType need not be Mandatory.

3. AlsojmJobDeviceNameOr QueueRequested has been made into two separate attributes:
deviceNameRequested and queueNameRequested, so we'd have to make either one of them
mandatory.

4. jmJobCurrentStateis now jobState and is Mandatory

5. jmJobStateReasons became four attributes: jobStateReasonsl, jobStateReasons2,
jobStateReasons3, and jobStateReasons4. None of them need to be Mandatory.

N

117
118

119

120
121

122

123
124
125
126

127
128

129
130

131
132
133
134
135
136

137
138
139

140
141

142
143
144
145

146
147

148
149

150
151

152

153
154

155

156
157
158
159

So should jobName, jobOwner, and one of deviceNameRequested or queueNameRequested be made
Mandatory?

ISSUE 76a- If yes, then should they be put into the jmJobStateT able, instead of the jmAttribute table, if
Issue 68b concluded that the jmAttributeT able should have no mandatory attributes.

ISSUE 70 - Add some simple general device alert TC, instead of using the Printer MIB Alert Codes.

The PrtAlertCodeT C generic values are not much good to an end user without knowing which subunit.
For example, SubUnitEmpty isn't very informative by itself. If an implementation also has the Printer
MIB, then alot more information is available, so a copy of the Printer Alert isn't very useful. If the
implementation doesn't have the Printer MIB, then the Printer Alert codes aren't informative enough.

Even worse, the deviceAlertCode(10) is Mandatory, which can't be implemented, if there isn't a Printer
MIB also implemented.

Issue 73 - Is there a problem with outputBinl ndex being made mandatory?

If outputBinlndex is made mandatory, but an implementation doesn't have the Printer MIB, the agent has
to put 0 asthe value. Should we add one more attribute: outputBinNumber, which is just a number, not
an index into the Printer MIB? If we do, which should be mandatory? Just one more reason to get rid of
the jmJobStateT able, which isforcing us to pick a particular outputBin implementation and make it
mandatory. If we got rid of thejmJobStateT able, we could forget about making any of the 3
outputBinName, outputBinNumber, or outputBinindex attribute mandatory.

Closed: Don't add outputBinNumber. Just add other(-1), unknown(-2), and multi(-3) values and keep
outputBinlndex as mandatory. This does also means that jmAttributeValueAsl nteger needs alower
bound of -3, not -2.

ISSUE 87 - When shall an agent make the mandatory attributes appear in the jmAttributeT able?

Shall an agent materialize all mandatory attributes when the job is submitted, so that a requester can

access them all with multiple explicit Gets in a single PDU, without fear of a missing object aborting the
PDU? If the mandatory attributes are represented as objects in the jmJobStateTable, then it is clear from
SNMP rules that the agent shall materialize at least an empty value for each mandatory object (attribute).

ISSUE 83 - Can some attributes be deleted before the jmGener al AttributePer sistence expires?

Harry Lewis 5/2 e-mail suggested that some of the attributes, such as"number Ofl nter veningJobs(9)"
don't even need to persist the shorter time specified by jmGener al AttributePer sistence.

However, if we move the mandatory attributes to the jmJobStateT able and make them objects, then they
shall persist for the longer persistence specified by jmGener al JobPer sistence.

See the rest of the issues list for the issues that do not relate to the overlap objects/attributes between the
jmJobStateT able and the jmAttributeT able.

3. Accessing the jmJobStateTable and the jmAttributeTable

In order to understand the pros and cons, it seems necessary to understand how an application would use
Get and Get Next to get information from these two tables. We need to consider the three basic types of
applications: (1) ajob monitoring application that is monitoring a particular job, (2) ajob monitoring
application that is monitoring all jobs on a device or server, and (3) ajob accounting or utilization

160
161

162

163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

205
206
207
208

209

210
211
212

program. Thefirst two kinds of applications are interested in active jobs and the third isinterested in
inactive jobs (canceled, or completed).

3.1 OID assignments to the objects

In order to construct complete examples, it is helpful to use the actual OIDs that will be assigned to the

objects and attributes in the MIB:

>
>
>

j obronM B

j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.

j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.

j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.

j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.

j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.
j obmonM B.

e e il ol
PRRRRRRER
e s

i alial el
PREEREEN
PR R RT

EEEEEEE
PRPPRPRPEPPW®
PR RPPReT

PERERRERE
e
RPRRPRRPRR R

NISISENINENES
NN NN

j obmonM BQbj ect s

j mGener al

j mGener al Tabl e

j mGeneral Entry

j mGener al Nunber OF Acti veJobs

j mGener al A dest Acti veJobl ndex
j mGener al Newest Act i veJobl ndex
j mGener al JobPer si st ence

j mGeneral Attri but ePersi stence
j mGener al JobSet Nane

PEREPRREE
oA wWNER

O

I D

mJobl DTabl e

j mlobl DEnt ry
1 j mJobSubmi ssi onl DI ndex
2
3

(0]

j mJ
i
.1
.1
1.2 jmlobSet | ndex
. 1.3 j mJobl ndex

obSt at eG

obSt at eTabl e

mJobSt at eEntry
j mlobSt ate
j mobSt at eKCct et sConpl et ed
j mlobSt at el mpr essi onsConpl et ed
j

j mJ
J
.1
1.
1.
1.
1. mJobSt at eAssoci at edVal ue

mJ
]
1
2
3
4

j Mttribute

MmAtt ri but eTabl e

jmAttri buteEntry
jmAttribut eTypel ndex
jmAttributel nstancel ndex
jmAttri but eVal ueAsl nt eger
j mAttri but eval ueAsCctets

j obmonM BConf or mance
j obmonM BConpl i ance
j MM BG oups

j mGener al Group

j mlobl DG oup

1

2]

.3 jmlobSt at eG oup
4]

j Mt tri but eG oup

3.2 Tables and the Get operation

Recall that the OIDs for table entries consist of the OID for the entry (column) in the table, followed by
the index(es) to that entry. To get the job state object in the jmJobStateT able for the job with a
jmJoblndex of 1000 in job set 1, the requester must pass the following OID as a Get input parameter:

213

214
215

216

217
218

219
220

221
222

223

224
225
226
227

228
229

230
231
232
233
234
235
236
237

238
239

240

241
242

243

244
245

246
247
248
249
250

251
252
253
254

255
256

jmJobState.1.1000, i.e., jobomonMIB.1.1.1.1.1.1.1000.

To get the corresponding from the jmAttributeT able, which is the jobState(3) attribute, the requester
must pass the following OID as a Get input parameter:

jmAttributeValueAsl nteger.1.1000.3.1, i.e,, jobmonMIB.1.1.1.1.2.1.1000.3.1.

Thus an application can always get the corresponding attribute from the jmAttributeT able with an OID
that is only two octets longer than is required on a Get for the corresponding object jmJobStateT able.

An application can get multiple objects from the jmJobStateT able and can get multiple attributes from
the jmAttributeT able by supplying multiple Get operationsin a single PDU.

If there is no such abject, the Get operation returns an error (and does not perform any further Get
operations in the submitted PDU, correct?)

3.3 Tables and the GetNext operation

The SNMP GetNext operation returns the value of the object specified by the next lexically higher OID
from the one supplied as an input parameter. GetNext also returns that next lexically higher OID itself, so
that the application can pass it back as an input parameter to a subsequent GetNext in order to get the next
object. If there are no lexically higher objects, GetNext returns an error.

The OID input parameter does not need to be "fully specified”. Trailing OID arcs can be omitted and they
shall behave as if the requester supplied O for those arcs.

For asingle index table, Get Next can be used to get the "next conceptual row" in the table. GetNext must
be used when the agent scattersrowsin atable, i.e, thetableisa"sparse” table. MIB specifications can
specify that tables shall not be sparse. ThejmJobStateTableis specified such that agents shall enter
conceptua rows such that jmJoblndex is monatonically increasing, until wrap occurs. However, because
jobs may be canceled, a canceled job may be removed from the middle of the table (after persisting for the
jmGeneralJobPer sistence time), thereby making the jmJobStateT able have an empty row, i.e., bea
"little bit sparse”. Also a system that processes jobs out of order may result in some empty rowsin
between rows that are awaiting the jmGener al JobPer sistence time to expire.

An application can get the state of the next job after job 1000 in the jmJobStateT able by passing in the
(same) OID:

jmJobState.1.1000, i.e., jobomonMIB.1.1.1.1.1.1.1000

If job 1001 had been canceled, say, and the agent removed it subsequently, the agent might return the
state of job 1002 and the OID:

jmJobState.1.1002, i.e., joomonMIB.1.1.1.1.1.1.1002

The application could copy the returned OID to the input parameter of a subsequent GetNext and the get
the state of the next job after 1002, and so forth.

If the application wanted to get more than just one object in the next conceptual row, the application could
supply several GetNext operations in the same PDU. So to get the jmJobState,

jmJobStateK OctetsCompleted, jmJobStatel mpressionsCompleted, and jmJobStateAssociatedValue
objects from the jmJobStateT able for the next job after 1002, the application could pass in the following
four OIDs in four Get Next operations in the same PDU:

jmJobState.1.1002, i.e., joomonMIB.1.1.1.1.1.1.1002

jmJobStateK OctetsCompleted.1.1002, i.e., jobmonMIB.1.1.1.1.2.1.1002
jmJobStatel mpr essionsCompleted.1.1002, i.e., jobmonMI1B.1.1.1.1.3.1.1002
jmJobStateAssociatedValue.1.1002, i.e., jobmonMI1B.1.1.1.1.4.1.1002

The agent shall return the next OID in each GetNextResponse for each of these inputs, which would be
the corresponding column in the next row, say, job 1003:

257
258
259
260

261
262
263
264

265
266
267
268
269

270
271
272
273

274
275
276

277

278
279

280

281
282
283

284
285

286
287
288

289
290

2901
292
293

294
295

296

297
298

jmJobState.1.1003, i.e., joomonMI1B.1.1.1.1.1.1.1003

jmJobStateK OctetsCompleted.1.1003, i.e., jobmonMIB.1.1.1.1.2.1.1003
jmJobStatel mpr essionsCompleted.1.1003, i.e., jobmonMI1B.1.1.1.1.3.1.1003
jmJobStateAssociatedValue.1.1003, i.e., jobmonMI1B.1.1.1.1.4.1.1003

NOTE - An application could not perform the above by using aindividual repeated GetNext operation
copying each result to the single input parameter, because GetNext increments the least significant part of
the OID first. Thus, each individual GetNext would get the same column in the next row, not step across
the columns in the same row.

In order to perform the equivalent of the above example in the jmAttributeT able, i.e., get the
jobState(3), jobK OctetsCompleted(50), impressionsCompleted(55), and the
jobStateAssociatedValue(4) attributes in the jmAttributeT able for the next job after job with
jmJoblndex 1002, the application must first determine the next valid jmJoblndex, which cannot be done
by simply passing in the following OID in GetNext operation:

jmAttributeValueAsl nteger.1.1002.3.1, i.e,, jobomonMI1B.1.1.1.1.2.1.1002.3.1
because the next lexically higher OID might be:

jmAttributeValueAsl nteger.1.1002.9.1, i.e,, jobomonMI1B.1.1.1.1.2.1.1002.9.1
which is the number Ofl nter veningJobs(9) attribute.

Instead, the application must determine what the next jmJoblndex value either by doing a GetNext on the
jmJobStateTable or by passing in the "incremented” partial OID that the application has incremented
"by hand" and shortened by removing the trailing OID arcs after the jmJobl ndex arc:

jmAttributeValueAsl nteger.1.1003, i.e., joomonMIB.1.1.1.1.2.1.1003

which will return the first attribute in the next job. The jmJoblndex arc the comes back in that
GetNextResponse is the next jmJoblndex in the jmJobAttributeT able.

3.4 Monitoring a single specific job

When a user submits a job, the client could fire up a monitoring application that monitors the job just
submitted. The monitoring application needs to determine the job's jmJobl ndex by one of severa
methods, depending on the implementation and the configuration:

(1) istold thejmJoblndex of the job to be monitored because the server returned the job-identifier which
the application knows the map to jmJoblndex value,

(2) can determine the jmJoblndex by doing a Get supplying the OID for the jmJobSubmissionl DIndex
to thejmJobl DTable as follows. Suppose that the job submission id generated by the client is:
"12345678nnnnnnnnnn”

jmJoblndex.1."12345678nnnnnnnnnn", i.e., jobmonMI1B.1.1.1.1.3.1." 123456 78nnnnnnnnnn"
which returns the jmJobl ndex for the job, or

(3) can scan the jmAttributeTable looking for attributes that match, such as jobOwner (15),
jobName(13), etc., though such a scan requires two probes: first to find the next jmJoblndex either
from the jmAttributeT able or more straightforwardly from the jmJobStateT able.

Give the jmJoblndex for the single job being monitored, the application can use direct Get operations to
get any objects from the jmJobStateT able or attributes from the jmAttributeT able as shown above.

3.5 Monitoring all active jobs on a server or device

An operator might run an application that monitors all active jobs on a server or device. Such an
application polls at some frequent enough interval to show changes, but not too frequently to bog down

299
300
301

302
303
304

305
306
307

308
309

310
311
312

313
314

315
316

317
318

319
320
321

322
323

324
325
326
327
328

329

330
331
332
333

334
335
336
337

338
339
340

the network or server/device. An end-user might fire up an application to monitor all jobs on a server or
printer, especially when searching for a"least busy printer”. Here the time to find the jobs and get their
attributes needs to be relatively short, or the user will not want to fire up such an application.

With either scenario, the application has to determine the oldest active job with a Get specifying the
jmJobSet=1, and it may as well get the number of active jobs and the newest active job index in the same
PDU:

jmGeneralNumber OfActiveJobs.1, i.e., jobmonMIB.1.1.1.1.1.1
jmGeneralOldestActiveJoblndex.1, i.e., jobmonMIB.1.1.1.1.2.1
jmGeneralNewestActiveJoblndex.1, i.e., jobmonMIB.1.1.1.1.3.1

If the value of jmGener alOldestActiveJoblndex is 0, there are no active jobs and the application updates
the display to show no jobs. Say the value of jmGener alOldestActiveJoblndex is 2000.

Then the application requests, say, the four (column) objects in the jmJobStateT able with four Getsin a
single PDU as shown above for job 1000. Then the application submits four GetNext operations in the
same PDU for each of the four objects in the jmJobStateT able as described above for job 1002.

Finally, if there are some additional attributes that the application wishes to get, such as
jobStateReasons1(5) and jobName(13), the application submits several Getsin asingle PDU of the form:

jmAttributeValueAsl nteger.1.2000.5.1, i.e,, jobmonMI1B.1.1.1.1.2.1.2000.5.1
jmAttributeValueAsOctets.1.2000.13.1, i.e., joomonM1B.1.1.1.1.2.1.2000.13.1

3.6 Accounting/Utilization application gathering data on
completed/canceled jobs

The accounting or utilization application remembers the lowest jmJoblndex from last time. The
application can either get all jmJobStateT able objects and all jmAttributeT able attributes, or may get
only certain selected attributes.

To get all attributes, that application starts with the lowest jmJoblndex that it had on the previous poll
cycle and supplies a number of GetNext operationsin asingle PDU.

To get only selected attributes the application must first determine the next jmJobl ndex by using GetNext
on the jmJobStateT able. The application may as well get the other objects from the jmJobState with a
bunch of GetNext operations in the same PDU. If the job is active, that data is probably thrown away, and
the application steps on to the next job. If thejob isinactive (canceled or completed), then the application
would specify multiple Get operationsin asingle PDU, one for each attribute that it wished.

4. Conclusions

The jmJobStateTableis very useful because its lowest order index isjmJobl ndex, so that any number of
selected objects can be obtained with multiple GetNext operations in a single PDU for the next job,
skipping over jobs that have been removed from the table. A subsequent PDU can contain multiple Get
operations for any attributes desired using the returned jmJobl ndex value.

If the mandatory attributes are all put into the jmJobStateT able as objects, and not in the
jmAttributeTable as attributes, it is clear by SNMP rules that all of the mandatory objects shall be
instantiated at the same time when the new job row is put into the jmJobStateT able. Also the persistence
timeis clearly separated by which table the information is contained.

The jmAttributeTable only contains conditionally mandatory attributes, no mandatory attributes, so that
the jmAttributeT able itself can be conditionally mandatory, thereby allowing a very small
implementation to only implement the jmJobStateT able and not the jmAttributeT able.

