
Error Recovery Section Cleanup / Akihiro Shimura, CANON INC.
October 22, 1999

37

7.5 Error recovery

All of the events in the following table cause one or more of the target’s task sets to be aborted; see ANSI
NCITS 325-1998 for details. Unless otherwise noted, a target shall preserve execution context for active
ORBs across these events.

Unrecoverable transaction errors may be caused by a missing acknowledgement packet, a split
transaction timeout, a data error or a retry limit exceeded. A missing acknowledgment by itself is not
necessarily an unrecoverable error; the target shall wait a split timeout period before further action. If a
transaction response is received within the split timeout period, there is no error. Otherwise, a split
transaction timeout has occurred. In the case of a data error or a split transaction timeout, if the request
was not addressed to an initiator status_FIFO, target may retry the transaction up to some
implementation-dependent limit. Once the target deems a transaction error unrecoverable, it shall set the
resp field in completion status for the faulted ORB to TRANSPORT FAILURE and transition the fetch
agent to the dead state.

When an unrecoverable transaction errors occur for a request that does not address an initiator
status_FIFO, the target should attempt to store status for the faulted ORB before transitioning the fetch
agent to the dead state. This notifies the initiator that error recovery is necessary. If an unrecoverable
transaction error occurs for a write request addressed to an initiator’s status_FIFO, the target shall take no
additional action. It is the initiator’s responsibility to detect such an error, usually by means of a timeout.

After a task set has been aborted, an initiator’s client applications and services may resume data transfer
with the target's services and client applications on a queue by queue basis.

Data transfer between a client application and a service may have caused device operations to
commence even if not all the data had been transferred before the task set was aborted. For this reason,
it is essential for each queue to be resumed by one of two methods. The simplest is to abandon any
operations in progress, flush initiator and target buffers as necessary and return both endpoints of the
queue to a known state—at which point the abandoned operation(s) may be reinitiated. The other
approach is more efficient and uses using execution context for active ORBs to permit resumption of data
transfer at the point at which it was interrupted.

Event AGENT_STATE.st Comment

Unrecoverable
transaction errors

Store status block TRANSPORT FAILURE for faulted ORB, if
possible.

ABORT TASK SET

LOGICAL UNIT RESET

DEAD

Target support for LOGICAL UNIT RESET is optional

Fetch agent reset
(write to AGENT_RESET)

RESET

TARGET RESET DEAD

Bus reset For each login, a target shall retain, for at least
reconnect_hold + 1 seconds after the bus reset, sufficient
information to permit initiators to reconnect their logins. After
this time, a target shall discard execution context for the task
set of any initiator that failed to reconnect.

Command reset
(write to RESET_START)

Power reset

RESET

These events are equivalent; execution context for all ORBs
in all task sets shall be discarded. Device operations should
be halted and the device restored to an idle condition.

Error Recovery Section Cleanup / Akihiro Shimura, CANON INC.
October 22, 1999

38

NOTE – A prerequisite to the resumption of data transfer is the existence of a login (the initiator reconnects to
the target if there was a bus reset) and a reset fetch agent (the initiator writes to AGENT_RESET if the target’s
fetch agent had been left in the dead state after the task set was aborted).

An initiator may implement simple recovery for a queue by signaling an ORB whose signature differs from
those of all ORBs active at the time the task set was aborted.

Although this method is robust, it may be improved upon. If the client application and service can reliably
resume data transfer from the point it was interrupted, it may be unnecessary to cancel operations and
flush buffers. In order for this method to work, the transport must be able to recognize resumption of an
ORB active at the time the task set was aborted. The signature field in a transport flow ORB (see 5.1)
provides a method by which previously active ORBs may be recognized if they are resubmitted after a
task set abort.

If the initiator elects not to reset the queue by signaling an ORB with a fresh signature value, data Data
transfer may be safely resumed if initiator and target can identify, for each queue, the ORBs active at the
time the task set was aborted. For a particular queue, an initiator considers an ORB to be active if no
status has been received from the target while a target considers an ORB active until positive
acknowledgment of the receipt of status is signaled by the initiator. When an initiator wishes to resume
data transfer for a particular queue from the point at which it was interrupted, it shall perform the following
steps:

a) If there were no active ORBs in the task set for the queue to be resumed, no action is necessary and
the initiator may resume data transfer for the queue;

b) Otherwise, for each previously active ORB for the queue, the initiator shall signal an equivalent ORB
to the target fetch agent. Certain parts of the ORB shall remain unchanged: the direction, special
and end_of_message bits and the queue and signature fields shall have the same values both
before and after the task set abort. The data_descriptor, and data_size fields and the
page_table_present may have different values but they shall describe a buffer of the same size and
whose contents are identical to the buffer described by the ORB at the time it was aborted. If a bus
reset caused the task set to be aborted, the spd and max_payload bits may differ as a result of
changed topology between the initiator and target. An initiator shall signal equivalent ORBs in the
same relative order within a queue as they had been prior to the task set abort.

c) Once all the previously active ORBs for a particular queue have been signaled, the initiator may
signal new ORBs in any order; these shall be interpreted by the target as if they are new; there are
no restrictions on their field values.

When the target fetches an ORB, the action taken depends upon the value of the queue and signature
field, which together uniquely identify an execution context for the initiator. If the value of signature is equal
to the signature of an ORB active for the queue at the time the task set was aborted, the target shall
discard execution context information for any older, previously active ORBs for the same queue. An ORB
is older than another ORB if it was signaled before the other ORB. If the value of the signature field is not
equal to any previously active ORB for the queue, the target shall discard all execution context information
for that queue.

When the signature field identifies execution context for a previously active ORB, the target operations are
determined by the data transfer state at the time the task set was aborted. If the data transfer had
completed, successfully or in error, and completion status had been written to the initiator's status_FIFO
(but no response had been received from the initiator), the target simply stores the same completion
status again. The target shall maintain context information for the ORB until the conditions specified by
7.4 are met. Otherwise, when data transfer had been in progress, the target shall resume data transfer
from the point specified by the execution context for the ORB.

