
The

S imple

Event

Notif ication

Service

Environment
Architecture

Revision 0.1
19 February 1996

Underscore™

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 2

Copyright © 1996 Underscore, Inc.
All Rights Reserved

This document may be distributed in any form, electronic or otherwise, provided that it is distributed
in its entirety and that the copyright and this notice are included.

Underscore and the Underscore logo are trademarks of Underscore, Inc.

Author’s Contact Information:

Comments, suggestions and inquiries regarding SENSE may be submitted via electronic mail to
JK Martin at jkm@underscore.com.

Acknowledgments:

I would like to thank Binnur Al-Kazily of Hewlett-Packard and the many other members of the
Printer Working Group their continued support of the SENSE Project.

Where this document can be found:

This document can be obtained from:

ftp://ftp-out.external.hp.com/snmpmib/sense/arch001.ps

Technical contributors:

Richard Landau, Digital Equipment Corporation

Jeff Schnitzer, Underscore, Inc.

Mike Timperman, Lexmark

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 3

Table of Contents

OVERVIEW .. 5

What is SENSE?.. 5
Brief History... 5
Current Project Status... 5
The Magazine Publishing Model.. 6

REQUIREMENTS AND CONSTRAINTS... 7

ARCHITECTURAL MODEL .. 9

Overview.. 10
Components ... 11

Component Classes.. 11
Server Class.. 11
Client Class... 12

Objects.. 12
Object Classes.. 12

Active Objects .. 12
Passive Objects... 13

Sessions.. 13
Registration.. 14
Renewal.. 14
Expiration Notices.. 14

Directory Services .. 14
Events... 15

Event Protocols.. 15
Management Services... 16
Messaging Model... 16

Message Structure.. 19
Opcode ... 19
Id .. 19
Length... 19
Data .. 19

Properties.. 19
EventData... 19

Wire Format... 19

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 4

Extensibility Through Property Specification... 19
Mandatory Properties ... 19
Optional Properties... 19

GLOSSARY OF TERMS.. 19

§

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 5

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 6

Overview

This document describes the “Simple Event Notification Service Environment,” abbreviated as
“SENSE” throughout this and other related documents and correspondence.

What is SENSE?

SENSE is a component architecture designed to facilitate the collection and distribution of events
within a heterogeneous network environment.

SENSE may be described as being:

• A facility used by an application to receive events from one or more sources

• An open framework into which components may be easily integrated to provide new
sources of events and/or consume events to generate useful information

• A protocol used by cooperating components to interact for the purpose of sending and
receiving events and descriptive information about each other

Brief History

The concept of SENSE was originated by JK Martin (Underscore), Rick Landau (Digital) and
Mike Timperman (Lexmark) in October, 1995, in response to an identified need for the
transmission of events from network printer devices to network management applications
specifically designed to monitor such devices. As work progressed it became readily apparent that
the need for such notification services are pervasive in today’s widespread distributed network
environments.

Current Project Status

The design and implementation of a rapid prototype of SENSE was undertaken by Underscore in
late 1995 to test the basic concepts described in this document. As of this writing the current
schedule for this effort is:

Completed Specifications: April 1996
Pre-Beta Release: May 1996
Public Beta Release: July 1996
Production Release: October 1996

Underscore expects to arrange for delivery of pre-Beta code to interested parties in late March,
1996.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 7

The Magazine Publishing Model

The architecture of SENSE is based on a simple model for magazine publishing as shown in the
following diagram:

AuthorSubscriber

Management

Publisher

Fulfillment House

Subscriptions Publications

This model is referred to within this document as the “Magazine Publishing Model,” or simply the
“MPM.” The key components of this model are:

Publication A collection of information of interest to one or more
persons.

Subscription A time-constrained association between a Publication
and a Subscriber whereby the associated Publication is
delivered to the associated Subscriber when the
Publication is published during the life of the
Subscription.

Author The person that generates the content that comprises a
Publication; multiple Authors may contribute to the
content of any given Publication.

Publisher The person responsible for coordinating the efforts of
Authors associated with a Publication, and ensures the
Publication is published as specified; a single Publisher
may be responsible for multiple Publications.

Subscriber The person interested in receiving one or more
Publications; interest is primarily based on content, but
other factors can play a role, including geographic
focus, language, etc.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 8

Fulfillment
House

The “clearinghouse” to which Publishers submit
Publications that are subsequently delivered to
Subscribers.

Management Coordinates the operations of the Fulfillment House to
ensure that all activities are performed in an efficient
manner consistent with established policy; reserves the
right to accept or cancel Subscriptions or Publications at
will based on policy.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 9

Requirements and Constraints

A primary motivation for developing SENSE is to improve on the delivery of critical event
messages as compared to the SNMP TRAP model. In particular, SENSE should improve on
these deficiencies in the SNMP TRAP mechanism:

• No standard method for adding or removing TRAP destination addresses, either statically or
dynamically;

• All TRAP messages are directed to a fixed UDP port number, thereby forcing the use of a
non-standard demultiplexing mechanism on hosts where multiple TRAP recipients operate;

• Only a single copy of the TRAP message is delivered to any given destination address using
unreliable datagram technology; if the datagram gets lost, then the recipient is unable to
determine that a TRAP message was ever sent.

SENSE must satisfy the following functional and operational requirements (not listed in any
particular order):

R.1 Reasonably reliable receipt of Event Messages
A key requirement is for a Client to expect reasonably reliable receipt of Event Messages.
The term "reasonably reliable" is used to denote the fact that a Server should make
multiple attempts to deliver the message to the Client. It should be noted that absolute
reliability is not considered practical, and thus, not considered as a requirement.

R.2 Datagrams are used at the transport layer
Since stream-oriented protocols are typically considered too "heavy" for lightweight
services, datagrams should be used for all SENSE protocol implementations. While not
called out as a requirement in the above list, it is expected that the SENSE facility should
be implemented for use with at least the following datagram-oriented transports:

• IP/UDP

• NetWare IPX

• AppleTalk DDP
Other datagram-oriented transports are not necessarily precluded from implementation.

R.3 A well-known transport address is defined for common use
To facilitate interoperability, the Server should be able to operate using a standard, "well
known" transport address.

R.4 A Server can operate using any transport address

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 10

The Server should be able to operate with any defined address within the target transport
environment. This will, of course, require that Clients know of and use the non-standard
transport address. This requirement is specified so as to allow a Server to operate in an
environment in which the standard transport address is already in use, or when an
unprivileged user wishes to operate a Server when the standard transport address requires
privileges. This requirement should be considered optional for an implementation.

R.5 Highly portable design
The overall capabilities described by SENSE do not require complex nor significant
resources. Hence, the SENSE specification should not require the use of facilities that
are not readily and/or inexpensively available within the many desktop and server
operating systems. Examples of facilities that would be considered not readily available
are: DCE, ToolTalk, CORBA, Kerberos, and other such facilities that are either
prohibitively expensive or unavailable on many platforms. Use of such facilities is
considered optional.

R.6 Multiple sources of events can be managed by a single Server
A Server should be able to represent any number of Event Sources. No minimum or
maximum number of supported Event Sources should be formally specified.

R.7 A Server can be queried to determine the set of event sources managed by the
Server
A Client should be able to request the list of event sources supported by the Server.

R.8 A Server can be queried to determine its operational parameters
A Client should be able to request a list of operational parameters and their values from
the Server.

R.9 A simple loopback capability to determine Server existence
A Client should be able to “ping” the Server to determine whether the Server is operating
at the target transport address. This requirement could be reasonably satisfied through
the implementation of Requirement R.8 above.

R.10 A client dynamically registers for receipt of events from multiple event sources
A Client should be able to dynamically request of events from a source represented on a
Server. The period of time during which the Client continues to receive events is fixed;
once this time period is exceeded, the Server automatically ceases transmission of the
events without further action by the Client.

R.11 A client specifies the network address to which all Event Messages are directed
When the Client requests the receipt of events from a source, part of the request includes
the destination transport address (network address and transport port number) to which
all Event Messages are delivered.

R.12 A client can cancel receipt of events at any time
A Client is free to cancel receipt of events before the assigned time period expires.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 11

R.13 Events are asynchronously transmitted by the Server to each registered client as
the events are received by the Server
The Server should send Event Messages to the network/transport address specified by
the Client at event request time as such events occur. The Server will continue to
periodically retransmit an Event Message until either the Server-defined retransmit count
expires, or until the Client acknowledges receipt of the Event Message.

R.14 Clients acknowledge receipt of events
A Client must acknowledge receipt of an Event Message so that the Server will cease
retransmission of the Event Message.

R.15 The content and format of an Event Message can have an opaque data component
that has no relationship to the underlying SENSE protocol
An Event Message can optionally contain a data component that is not related to nor
relevant to the SENSE system; instead, the receiving Client is expected to be familiar
with the format of such messages based on the associated event source.

R.16 A Server must be able to control resource consumption
A key aspect of the SENSE facility is to be highly "Server-oriented" with respect to
implementation and performance. In particular, the Server should be allowed to
arbitrarily implement the values for such parameters as:

• Maximum number of clients

• Maximum registration period

• Maximum number of retries for delivery of event messages
It is expected that the values of these parameters (and probably many others) will be part
of the response to a request for a Server's operational parameters as described in R.8
above.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 12

Architectural Model

The SENSE Architecture Model closely resembles the previously described Magazine Publication
Model, as shown in the following diagram:

Subscriber Publisher

Server
Subscriptions Publications

Entity

Manager

Overview

The SENSE architecture revolves around two collections of definitions that are closely related,
namely, Components and Objects, each of which are organized into loosely coupled classes.

The concept of a Component within SENSE is very important in that it represents the smallest unit
of interoperability within the SENSE framework. The SENSE business model (not described in
this document) revolves around the ability for customers and vendors to easily create, integrate and
operate Components in a “plug-and-play” manner within the overall SENSE framework.

A fundamental aspect of a Component is that it is usually perceived as a relatively active element,
such as an application or similar program unit. While a Component may have associated data, it is
the executable aspect that distinguishes a Component from an Object.

An Object within SENSE refers to a collection of data used by Components to effect the
capabilities of SENSE. Unlike Components, Objects are relatively passive in nature; there are no
executable aspects surrounding any given Object type in SENSE. Objects are created, accessed
and destroyed by Components.

The concept of a Publication is critically important within SENSE. A Publication is not
categorized as an official Component, but rather as one of the defined Object types, since a
Publication does not satisfy the fundamental Component criteria of being an active element, such
as a program.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 13

Objects, including Publications, are described in more detail later in this document, however a brief
definition of the term “Publication” is necessary in order to properly introduce the Component
classes within SENSE, since Publications are essentially the central focus and common thread
among all Components.

Briefly, a Publication is the representation of the entity that generates events; that is, where ever the
term “event source” is used, imagine that event source as a “Publication” within SENSE.

For example, when SENSE is applied to the problem domain of printer management, a
Publication would represent a single printer. A party interested in receiving events from a specific
printer would register for receipt of events from the Publication that represents the printer. To
determine which Publication to select for event reception, a party would also request descriptive
information about one or more of the available Publications.

Components

A Component is an “active” element within SENSE in that a Component is typically implemented
as some kind of program unit, such as an application, or library used within an application. A
Component may reside on any network host capable of communications with compatible SENSE
Components.

Component Classes

There are two primary classes of Components within SENSE:

• Server

• Client

All communications activities within SENSE are conducted either to or from the Server; that is, no
direct communications are conducted between any two Client Components.

Server Class

The “Server” class contains one member: the SENSE Server. The SENSE Server is essentially
the “center of the SENSE universe” in that all interactions between Components exist between one
of the Client classes and the Server.

The Server performs these functions:

• Manages Client Sessions

• Provides a modest level of Directory Services

• Receives Event Messages from Clients that manage Publications on the Server

• Propagates Event Messages to interested Clients

• Publishes its own Publication (set of events)

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 14

An important aspect of SENSE communications is that Servers do not communicate between
each other. No attempt is made for one Server to “know about” other Servers and the Publications
that might be registered on those Servers.

Client Class

The “Client” class is further subdivided into four subclasses, each performing a specific role.

Publisher Registers Publications with the Server; collects and submits to the
Server events from the event source represented by the Publication.

Subscriber Dynamically registers with the Server to receive events from one or
more event sources, and queries the Server for the list of available
Publications, and properties of those Publications.

Manager Performs management activities on the Server in a privileged manner;
very little work has been done to date for this Client class.

Transient A special kind of Client that only exists to submit queries (informational
requests) to the Server; until a Client registers as either a Subscriber or
Publisher, it is considered a “Transient” Client.

Objects

An Object is a “passive” element within SENSE in that it has no executable aspects whatsoever.
Objects exist only through creation by Components. A SENSE Object is usually ephemeral in
that it does not typically exist beyond the life of the Component responsible for its existence.

Object Classes

Object classes may be viewed as two collections of classes, based on the entity or concept
represented by the class.

Active Objects

An active Object is one that is relatively long lived, and where one or more of its Properties
typically change value during its lifetime.

An active Object is represented as a collection of defined Properties. A Property is a name-value
pair of character strings that closely resemble an “environment variable” found in many operating
systems. A collection of Properties is called a PropertyList.

A critically important aspect of active Objects is that while each defined Object has a known set of
defined Properties, the Object may also have other Properties attached to it by a Component.
When Objects are exchanged between Components, the exchange is handled such that the
receiving Component accepts the complete PropertyList that currently describes the Object without
knowing that the Object’s PropertyList contains one or more Properties unknown to the receiving
Component.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 15

The ability of a Component to “attach” arbitrary Properties to an active Object without having to
coordinate the handling of such Properties between interested Components is a fundamental aspect
of the extensibility of the SENSE architecture.

The set of active Objects includes:

Publisher The PropertyList describing a single Publisher Component

Subscriber The PropertyList describing a single Subscriber Component

Manager The PropertyList describing a single Manager Component

Publication The PropertyList describing a single Publication

Passive Objects

A passive Object is one that is relatively short lived, and typically none of its Properties change
during its lifetime.

Passive Objects are a diverse lot, ranging from singular “blobs” of information to assorted lists.

The set of passive Objects includes:

Property A named string structured as a name-value pair of strings

PropertyList An unordered list of Properties

Name A simple string used as a key in a specific context

NameList An unordered list of Names

Message The basic protocol data unit (PDU) used in SENSE
communications

EventData A Publication-specific collection of data associated with a specific
event

Sessions

A fundamental SENSE concept is that of the Client Session. A Session is used to maintain a
relationship between a specific Client and a Server. There are three types of Sessions managed by
a Server, one for each of three types of Clients:

• Publisher

• Subscriber

• Manager

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 16

These three session types are quite similar in design and function; they exist as individually defined
types only to allow the Server flexibility in assigning administrative policies with regard to capacity
and required identification parameters.

Since the CommonSENSE protocol is based on datagrams—and since the standard datagram
protocol in IP networks is the unreliable UDP transport service—a SENSE Server must be able to
handle the likely scenario of a Client unexpectedly terminating its Session without first contacting
the Server, thereby not allowing the Server to recapture its resources in a timely manner.

Registration

The way this scenario is handled in SENSE is that all Clients (except “Transient” Clients) must
register with the Server as either a Subscriber, Publisher or Manager. Every Session registration
involves a registration period that is “negotiated” between the Client and Server.

The negotiation of a registration period is quite simple and is designed to be “Server-centric” in
that the Client “requests” a particular registration period in the registration request message, and
the Server “declares” the actual registration period in the corresponding response message. This
approach gives a Server a great deal of flexibility in managing its resources by being able to
enforce short registration periods, if necessary, when it appears that too many Clients fail to
properly deregister when they no longer have need for SENSE services.

Renewal

When the registration period for a Client is about to expire, the Client must continue the Session by
sending the Server a renewal request. Similar to the registration request described above, the
Client again proposes a registration period, and the Server responds with the value that is actually
used.

Expiration Notices

When a Client Session is about to expire, the Server may optionally assist the Client in managing
this situation by sending the Client an expiration notice to “nudge” the Client in sending a renewal
request. This optional Server capability alleviates Client application developers from having to deal
with potentially difficult timer facilities on the local platform.

Directory Services

A SENSE Server provides a modest level of Directory Services to its Clients to minimize the
dependency on external facilities that may not be available in all platform or network
environments.

The services needed by most Clients fall into two general categories of requests:

GetObjectIdList Acquire a list of identifiers for a given Object class

GetObjectProperties Acquire one or more Properties for the specified Object

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 17

Each of these requests can be made of one of the following Object types:

• Publication

• Publisher

• Subscriber

• Manager

A response to a GetObjectIdList request is a NameList containing the IDs of all currently
registered Objects on the Server.

A response to a GetObjectProperties request is a PropertyList containing either all currently
defined Properties, or only those Properties specified in the request. (Note: should we dub this the
“Powerful GetObjectProperties” message to better fit into the “Simple...” universe? ;--)

A Server may elect to not support these services for particular Object types due to security
concerns. For example, it may not be desirable within a given environment to allow arbitrary
Clients to have access to identification information for Subscribers currently registered on the
Server.

Events

Events form the backbone of existence for SENSE. The simple goal for SENSE in this respect is
to allow the passage of opaque event data from a Publisher (on behalf of a registered Publication),
through the Server, and on to all registered Subscribers. In a sense (pun intended), the protocol
and services provided by a SENSE Server provide for a sort of “wrapper protocol” that allows an
arbitrary Publisher to propagate any kind of data—even binary data—through a Server and on to
any number of Subscribers (only limited by the resources of the Server).

Perhaps more importantly are the facilities provided by SENSE to maximize the likelihood of
successful receipt of events by Subscribers. The delivery mechanism used by a Server includes
multiple retries in sending any given Event Message to a target Subscriber; the Server will
repeatedly send the Event Message until either the Client acknowledges receipt of the message, or
the retry count is exceeded. (The maximum retry count is one of the properties “negotiated”
between the Client and the Server when the Client registers or renews a Session with the Server.)

Event Protocols

One of the defining characteristics of a Publication is which Event Protocols are supported by the
Publication. The term Event Protocol is used here to denote the set of Properties contained within
an Event Message, as well as the content and format of an optional opaque data component
attached to the message.

Note that using the term “Event Protocol” is really a misnomer here, since there is no real protocol
exchange between the Publisher and its (anonymous) Subscribers. The term is used, however, as
it is expected that most Publishers will use SENSE to encapsulate the contents of certain PDUs for

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 18

distribution to interested Subscribers, since SENSE offers significantly improved event
distribution services when compared with the native services associated with such PDUs.

SNMP is a prime example of this scenario, whereby TRAP messages are sent in such a manner
that interested Client applications may dynamically commence receiving TRAPs from a number of
SNMP agents, then disassociate themselves from reception, all without the SNMP agents being
involved in the process, particularly in the process of defining and redefining destination TRAP
addresses.

All that must be done to provide this kind of capability is to write a SENSE Publisher that
communicates with a SNMP agent (as a type of “proxy” agent) and publishes a corresponding
Publication on a SENSE Server. Alternatively, SENSE Publisher capabilities could be directly
integrated within the SNMP agent.

One of the challenges of SENSE is to enumerate or otherwise register the set of names and/or
identifiers that specify particular Event Protocols, such as SNMP.

Management Services

As of this writing, the topic of SENSE Management Services has not yet received much attention
due to other, more pressing requirements to establish the basic foundation and infrastructure.
However, it is expected that a modest level of services in this area will be developed to provide for
these types of management activities:

Set Server Properties Set one or more operational controls or identifying
properties of a Server

Client Termination Terminate a Client for any number of reasons, ranging
from security to resource recapture (due to an errant
Client application) to Component updating activities

Publication Termination Similar to Client Termination, but targeted at
Publications

Shutdown/Restart Server Control the orderly, graceful shutdown of a Server so
that all currently registered Clients may properly handle
the interruption of services

Messaging Model

The Messaging Model used in SENSE is based on datagram technology. This choice was made
in response to the requirement that SENSE be highly scaleable.

Clients communicate with Servers using a simple message format based on the Common Printer
Access Protocol (CPAP) designed by Brian K. Reid and Christopher Kent while at Digital
Equipment Corporation. The message format is very simple in that it is based on character strings

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 19

and integers encoded as character strings. This approach largely eliminates the need to deal with
the usual “Little Endian/Big Endian” problem of byte and bit order, making it an ideal candidate
when multi-platform deployment and interoperability is critical.

Given the simple communications requirements of SENSE, it seems natural to base the general
protocol used between SENSE Components on CPAP. This decision is so natural that the name
of the variation of CPAP used in SENSE is called the “CommonSENSE” protocol.

An interesting aspect of CPAP of which the CommonSENSE protocol borrows heavily is the fact
that, unlike many other protocols, there are only two messages used to convey a response to any
given request; one message indicates success, and the other indicates failure.

The use of only two response messages is made possible by the fact that every message contains a
message ID number that is unique to the sender of the message; when the receiver responds to the
message, one of the two response messages types is returned in which the message ID of the
response is the same as the original request message. It is up to the sender to maintain its own set
of message ID values, which usually requires the management of a single “stationary pad-like”
integer value that increases monotonically with each use.

The use of a message ID in this model allows the sender to manage what might be termed a “sub-
session” with its communications peer. That is, if the sender wishes to perform rapid dispatching
of message handling functions, then the message ID can be quickly and efficiently used to
discriminate among received messages without having to manage potentially large relationships
between message opcodes and corresponding message handler functions.

SENSE messages are roughly divided into six categories:

Queries Requests from Clients to which the Server responds

Registration Messages that pertain to the registration, renewal and deregistration of
Client sessions on the Server

Events Asynchronous messages pertaining to the delivery of events
associated with Publications

Management Messages that control the operations and identification of the Server

Responses Messages sent in response to queries, or to acknowledge receipt of
certain types of messages

Maintenance Miscellaneous messages used to test or assist in communications
connectivity

The currently defined set of messages is described in the following table.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 20

Message Name Description
Event Messages
PublishEvent Submit an Event to the Server
Event Receive an Event from a Server

Registration Messages
Cancel Cancel a subscription to one or more Publications
RegisterManager Start a Management Session
RegisterPublication Start a new Publication
RegisterPublisher Start a Publisher Session
RegisterSubscriber Start a Subscriber Session
RenewManager Continue a Management Session
RenewPublisher Continue a Publisher Session
RenewSubscriber Continue a Subscriber Session
Subscribe Register for receipt of Events from one or more Publications
UnRegisterManager Terminate a Manager Session
UnRegisterPublication Terminate a Publication
UnRegisterPublisher Terminate a Publisher Session
UnRegisterSubscriber Terminate a Subscriber Session
UpdateProperties Update the Properties of an Object

Query Messages
GetManagerIdList Obtain the list of IDs for all registered Managers
GetManagerProperties Obtain one, multiple or all Properties of a specified Manager
GetPublicationIdList Obtain the list of IDs for all registered Publications
GetPublicationProperties Obtain one, multiple or all Properties of a specified Publication
GetPublisherIdList Obtain the list of IDs for all registered Publishers
GetPublisherProperties Obtain one, multiple or all Properties of a specified Publisher
GetSubscriberIdList Obtain the list of IDs for all registered Subscribers
GetSubscriberProperties Obtain one, multiple or all Properties of a specified Subscriber

Management Messages
SetServerProperties Set one or more operational or identifying Properties of a Server
ShutdownServer Shutdown a Server
TerminateManager Terminate one or more Manager Sessions
TerminatePublication Terminate one or more Publications
TerminatePublisher Terminate one or more Publisher Sessions
TerminateSubscriber Terminate one or more Subscriber Sessions

Maintenance Messages
KeepAlive Indicate that the specified Session remains intact
Loopback Determine basic connectivity

Response Messages
Reply Positive acknowledgment or returned results from an associated

message
Nak Negative response

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 21

Message Structure

The structure of a SENSE message is shown in the following illustration:

Opcode Id Length Content

Datagram

PropertySet Data

Property Property Property Property• • • "DATA=" Opaque Binary Data

NameString "=" 0x01ValueString

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 22

Glossary of Terms

This section contains concise definitions of SENSE terminology.

It is recognized that the following list is neither complete nor entirely consistent...

Alert Condition Condition of a Publication in which the Publication is unable to
perform its intended mission until the cause of the alert condition is
eliminated.

Alert Message An Event Message declaring that the Publication has entered the
Alert Condition, or that a new Alert Event has occurred while the
Publication is in the Alert Condition.

API Application Programming Interface; commonly used to reference
either the specification or set of library modules used by an
application to communicate with a Server.

Basic Edition The standard, fundamental Edition for a Publication; a Publication
must have this Edition registered.

Busy Condition Condition of a Publication in which the Publication is currently
performing useful work in its intended mission.

Cancel Terminate subscription to the specified Publications.

Capability A specific feature performed by a Server, Publisher or Subscriber; a
capability is indicated by the presence of a specific property, the value
of which specifies the level of capability. For example, if a Server is
able to persistently store Publications, then it would define the
property “PersistentPublications” and set the value to
“Yes”.

Client An application consuming the services of a Server.

Client Context An API element used within a Client application to manage a single
session with a Server.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 23

Condition The overall operational status of a Publication, one of a small, finite
set of enumerated values.

Client Context An API element used within a Client application to manage a single
session with a Server.

Edition A specific form of a Publication; an Edition typically describes the
binding between a Publisher and an Event Protocol, but may also
describe specific subsets of Event information for the Publication
represented by the Publisher. An Edition may be comprised of any
combination of a number of dimensional aspects of the Publication.

Entity The abstract source of events represented by a Publication.

Event A collection of information submitted by a Publisher on behalf of an
associated Publication. A Subscriber receives Events after it has
subscribed to the Publication.

Event Message A message used to convey the occurrence and content of an Event.
A Publisher sends Event Messages to a Server on behalf of the
associated Publication, whereupon the Server sends the Event
Message (with enhancements) to all current Subscribers of the
Publication.

Event Protocol The format and content of a series of messages that convey event
information between two parties; examples might include SNMP,
IEEE 1284.1 (TIPSI), CPAP, etc.

Healthy Condition A condition indicating that the Publication is operationally consistent
and able to perform its intended mission.

Idle Condition A condition in which the Publication is operationally consistent, but
currently not performing any useful work in its intended mission.

Info Message A message containing arbitrary informative data, such as debugging
information, etc.

Message A protocol element exchanged between a Client and a Server.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 24

Message Id An unsigned 32-bit integer used by the message sender to uniquely
identify the message.

Nak Message A message indicating that the previously sent message can not be
processed as desired; the reason for failure is contained in the
message.

Name An string used to denote a specific Value.

NameList An unordered list of Names.

Negotiation The mechanism used to resolve registration properties when a Server
and a Client may have different desires or policies; a Client submits
the desired value, and the Server responds with the value that must be
used during the session.

Operator A person designated to perform certain types of operational tasks for
an Entity.

Persistent Denotes a state that will not change unless further action is taken.

Property An object attribute represented by a Name/Value pair.

PropertyList An unordered list of Properties.

Publication The representation of an Entity as managed by a Publisher.

Publication Id The unique Server-assigned identifier for a single Publication.

Publisher The agent acting on behalf of an Entity to publish Events that occur
within the Entity.

Publisher Id The unique Server-assigned identifier for a specific Publisher.

Publisher API The API used by a Publisher to communicate with a Server.

Registration Period The time during which a Client Session is active; once the period
expires, the Session is no longer exists and all communications with
the Client ceases.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 25

Renewal The mechanism used by a Client to extend the life of a Session.

Reply Message A message used to respond to a previously received request. All
Reply messages have as a Message Id the same Id specified in the
original request message.

Server The agent providing SENSE services to Clients.

Session The time during which a Client is registered with a Server; a Session
commences upon successful registration with the Server, and ends
when the Client either deregisters with the Server, or the registration
period expires.

State Message A message describing the fact that a Publication has entered a
particular state.

Subscribe The mechanism used by a Subscriber to begin receiving Event
Messages from a Publication.

Subscriber A Client interested in Events from a Publication.

Subscriber API The API used by a Subscriber to communicate with a Server.

Subscription The mechanism used to manage the relationship between one or
more Publications and a single Subscriber.

Subscription Id The unique Server-assigned identifier for a single Subscription.

Technician A person assigned certain operational tasks that require a relatively
high level of training.

Transient A situation that is very short-lived, one that does not require further
action to change.

Unknown Condition A condition indicating that the current status of an Publication is not
currently known.

Value A string representing context-specific information.

Underscore™ SENSE Architecture
Revision 0.1 19-Feb-96

Page 26

Warning Condition A condition indicating that the Publication currently has one or more
state situations which, if not corrected in the relatively near future,
will probably cause the Publication to enter the Alert Condition.

